Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjeq1 | ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3958 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | disjss1 5024 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐵 𝐶)) |
4 | eqimss 3957 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
5 | disjss1 5024 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
7 | 3, 6 | impbid 215 | 1 ⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1543 ⊆ wss 3866 Disj wdisj 5018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-mo 2539 df-clab 2715 df-cleq 2729 df-clel 2816 df-rmo 3069 df-v 3410 df-in 3873 df-ss 3883 df-disj 5019 |
This theorem is referenced by: disjeq1d 5026 volfiniun 24444 disjrnmpt 30643 iundisj2cnt 30840 unelldsys 31838 sigapildsys 31842 ldgenpisyslem1 31843 rossros 31860 measvun 31889 pmeasmono 32003 pmeasadd 32004 meadjuni 43670 |
Copyright terms: Public domain | W3C validator |