MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1 Structured version   Visualization version   GIF version

Theorem disjeq1 5063
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq1 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjeq1
StepHypRef Expression
1 eqimss2 3989 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 disjss1 5062 . . 3 (𝐵𝐴 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
4 eqimss 3988 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 disjss1 5062 . . 3 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
73, 6impbid 212 1 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wss 3897  Disj wdisj 5056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-cleq 2723  df-clel 2806  df-rmo 3346  df-ss 3914  df-disj 5057
This theorem is referenced by:  disjeq1d  5064  volfiniun  25475  disjrnmpt  32565  iundisj2cnt  32781  unelldsys  34171  sigapildsys  34175  ldgenpisyslem1  34176  rossros  34193  measvun  34222  pmeasmono  34337  pmeasadd  34338  meadjuni  46565
  Copyright terms: Public domain W3C validator