MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjeq1 Structured version   Visualization version   GIF version

Theorem disjeq1 4784
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjeq1 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem disjeq1
StepHypRef Expression
1 eqimss2 3818 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 disjss1 4783 . . 3 (𝐵𝐴 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
4 eqimss 3817 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 disjss1 4783 . . 3 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
73, 6impbid 203 1 (𝐴 = 𝐵 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197   = wceq 1652  wss 3732  Disj wdisj 4777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-clab 2752  df-cleq 2758  df-clel 2761  df-rmo 3063  df-in 3739  df-ss 3746  df-disj 4778
This theorem is referenced by:  disjeq1d  4785  volfiniun  23605  disjrnmpt  29846  iundisj2cnt  30007  unelldsys  30668  sigapildsys  30672  ldgenpisyslem1  30673  rossros  30690  measvun  30719  pmeasmono  30833  pmeasadd  30834  meadjuni  41311
  Copyright terms: Public domain W3C validator