MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephadd Structured version   Visualization version   GIF version

Theorem alephadd 10264
Description: The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephadd ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))

Proof of Theorem alephadd
StepHypRef Expression
1 fvex 6769 . . . . 5 (ℵ‘𝐴) ∈ V
2 fvex 6769 . . . . 5 (ℵ‘𝐵) ∈ V
3 djuex 9597 . . . . 5 (((ℵ‘𝐴) ∈ V ∧ (ℵ‘𝐵) ∈ V) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V)
41, 2, 3mp2an 688 . . . 4 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V
5 alephfnon 9752 . . . . . . . 8 ℵ Fn On
65fndmi 6521 . . . . . . 7 dom ℵ = On
76eleq2i 2830 . . . . . 6 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
87notbii 319 . . . . 5 𝐴 ∈ dom ℵ ↔ ¬ 𝐴 ∈ On)
96eleq2i 2830 . . . . . 6 (𝐵 ∈ dom ℵ ↔ 𝐵 ∈ On)
109notbii 319 . . . . 5 𝐵 ∈ dom ℵ ↔ ¬ 𝐵 ∈ On)
11 df-dju 9590 . . . . . . 7 (∅ ⊔ ∅) = (({∅} × ∅) ∪ ({1o} × ∅))
12 xpundir 5647 . . . . . . 7 (({∅} ∪ {1o}) × ∅) = (({∅} × ∅) ∪ ({1o} × ∅))
13 xp0 6050 . . . . . . 7 (({∅} ∪ {1o}) × ∅) = ∅
1411, 12, 133eqtr2i 2772 . . . . . 6 (∅ ⊔ ∅) = ∅
15 ndmfv 6786 . . . . . . 7 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
16 ndmfv 6786 . . . . . . 7 𝐵 ∈ dom ℵ → (ℵ‘𝐵) = ∅)
17 djueq12 9593 . . . . . . 7 (((ℵ‘𝐴) = ∅ ∧ (ℵ‘𝐵) = ∅) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = (∅ ⊔ ∅))
1815, 16, 17syl2an 595 . . . . . 6 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = (∅ ⊔ ∅))
1915adantr 480 . . . . . . . 8 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → (ℵ‘𝐴) = ∅)
2016adantl 481 . . . . . . . 8 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → (ℵ‘𝐵) = ∅)
2119, 20uneq12d 4094 . . . . . . 7 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) = (∅ ∪ ∅))
22 un0 4321 . . . . . . 7 (∅ ∪ ∅) = ∅
2321, 22eqtrdi 2795 . . . . . 6 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) = ∅)
2414, 18, 233eqtr4a 2805 . . . . 5 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
258, 10, 24syl2anbr 598 . . . 4 ((¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
26 eqeng 8729 . . . 4 (((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V → (((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))))
274, 25, 26mpsyl 68 . . 3 ((¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
2827ex 412 . 2 𝐴 ∈ On → (¬ 𝐵 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))))
29 alephgeom 9769 . . 3 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
30 ssdomg 8741 . . . . 5 ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
311, 30ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
32 alephon 9756 . . . . . 6 (ℵ‘𝐴) ∈ On
33 onenon 9638 . . . . . 6 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
3432, 33ax-mp 5 . . . . 5 (ℵ‘𝐴) ∈ dom card
35 alephon 9756 . . . . . 6 (ℵ‘𝐵) ∈ On
36 onenon 9638 . . . . . 6 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
3735, 36ax-mp 5 . . . . 5 (ℵ‘𝐵) ∈ dom card
38 infdju 9895 . . . . 5 (((ℵ‘𝐴) ∈ dom card ∧ (ℵ‘𝐵) ∈ dom card ∧ ω ≼ (ℵ‘𝐴)) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
3934, 37, 38mp3an12 1449 . . . 4 (ω ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4031, 39syl 17 . . 3 (ω ⊆ (ℵ‘𝐴) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4129, 40sylbi 216 . 2 (𝐴 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
42 alephgeom 9769 . . 3 (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵))
43 ssdomg 8741 . . . . 5 ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)))
442, 43ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵))
45 djucomen 9864 . . . . . . 7 (((ℵ‘𝐴) ∈ V ∧ (ℵ‘𝐵) ∈ V) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)))
461, 2, 45mp2an 688 . . . . . 6 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴))
47 infdju 9895 . . . . . . 7 (((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐵)) → ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
4837, 34, 47mp3an12 1449 . . . . . 6 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
49 entr 8747 . . . . . 6 ((((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ∧ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴))) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
5046, 48, 49sylancr 586 . . . . 5 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
51 uncom 4083 . . . . 5 ((ℵ‘𝐵) ∪ (ℵ‘𝐴)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵))
5250, 51breqtrdi 5111 . . . 4 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5344, 52syl 17 . . 3 (ω ⊆ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5442, 53sylbi 216 . 2 (𝐵 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5528, 41, 54pm2.61ii 183 1 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  wss 3883  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  dom cdm 5580  Oncon0 6251  cfv 6418  ωcom 7687  1oc1o 8260  cen 8688  cdom 8689  cdju 9587  cardccrd 9624  cale 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-har 9246  df-dju 9590  df-card 9628  df-aleph 9629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator