MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephadd Structured version   Visualization version   GIF version

Theorem alephadd 10471
Description: The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephadd ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))

Proof of Theorem alephadd
StepHypRef Expression
1 fvex 6835 . . . . 5 (ℵ‘𝐴) ∈ V
2 fvex 6835 . . . . 5 (ℵ‘𝐵) ∈ V
3 djuex 9804 . . . . 5 (((ℵ‘𝐴) ∈ V ∧ (ℵ‘𝐵) ∈ V) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V)
41, 2, 3mp2an 692 . . . 4 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V
5 alephfnon 9959 . . . . . . . 8 ℵ Fn On
65fndmi 6586 . . . . . . 7 dom ℵ = On
76eleq2i 2820 . . . . . 6 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
87notbii 320 . . . . 5 𝐴 ∈ dom ℵ ↔ ¬ 𝐴 ∈ On)
96eleq2i 2820 . . . . . 6 (𝐵 ∈ dom ℵ ↔ 𝐵 ∈ On)
109notbii 320 . . . . 5 𝐵 ∈ dom ℵ ↔ ¬ 𝐵 ∈ On)
11 df-dju 9797 . . . . . . 7 (∅ ⊔ ∅) = (({∅} × ∅) ∪ ({1o} × ∅))
12 xpundir 5689 . . . . . . 7 (({∅} ∪ {1o}) × ∅) = (({∅} × ∅) ∪ ({1o} × ∅))
13 xp0 6107 . . . . . . 7 (({∅} ∪ {1o}) × ∅) = ∅
1411, 12, 133eqtr2i 2758 . . . . . 6 (∅ ⊔ ∅) = ∅
15 ndmfv 6855 . . . . . . 7 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
16 ndmfv 6855 . . . . . . 7 𝐵 ∈ dom ℵ → (ℵ‘𝐵) = ∅)
17 djueq12 9800 . . . . . . 7 (((ℵ‘𝐴) = ∅ ∧ (ℵ‘𝐵) = ∅) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = (∅ ⊔ ∅))
1815, 16, 17syl2an 596 . . . . . 6 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = (∅ ⊔ ∅))
1915adantr 480 . . . . . . . 8 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → (ℵ‘𝐴) = ∅)
2016adantl 481 . . . . . . . 8 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → (ℵ‘𝐵) = ∅)
2119, 20uneq12d 4120 . . . . . . 7 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) = (∅ ∪ ∅))
22 un0 4345 . . . . . . 7 (∅ ∪ ∅) = ∅
2321, 22eqtrdi 2780 . . . . . 6 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) = ∅)
2414, 18, 233eqtr4a 2790 . . . . 5 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
258, 10, 24syl2anbr 599 . . . 4 ((¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
26 eqeng 8911 . . . 4 (((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V → (((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))))
274, 25, 26mpsyl 68 . . 3 ((¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
2827ex 412 . 2 𝐴 ∈ On → (¬ 𝐵 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))))
29 alephgeom 9976 . . 3 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
30 ssdomg 8925 . . . . 5 ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
311, 30ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
32 alephon 9963 . . . . . 6 (ℵ‘𝐴) ∈ On
33 onenon 9845 . . . . . 6 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
3432, 33ax-mp 5 . . . . 5 (ℵ‘𝐴) ∈ dom card
35 alephon 9963 . . . . . 6 (ℵ‘𝐵) ∈ On
36 onenon 9845 . . . . . 6 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
3735, 36ax-mp 5 . . . . 5 (ℵ‘𝐵) ∈ dom card
38 infdju 10101 . . . . 5 (((ℵ‘𝐴) ∈ dom card ∧ (ℵ‘𝐵) ∈ dom card ∧ ω ≼ (ℵ‘𝐴)) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
3934, 37, 38mp3an12 1453 . . . 4 (ω ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4031, 39syl 17 . . 3 (ω ⊆ (ℵ‘𝐴) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4129, 40sylbi 217 . 2 (𝐴 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
42 alephgeom 9976 . . 3 (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵))
43 ssdomg 8925 . . . . 5 ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)))
442, 43ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵))
45 djucomen 10072 . . . . . . 7 (((ℵ‘𝐴) ∈ V ∧ (ℵ‘𝐵) ∈ V) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)))
461, 2, 45mp2an 692 . . . . . 6 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴))
47 infdju 10101 . . . . . . 7 (((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐵)) → ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
4837, 34, 47mp3an12 1453 . . . . . 6 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
49 entr 8931 . . . . . 6 ((((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ∧ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴))) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
5046, 48, 49sylancr 587 . . . . 5 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
51 uncom 4109 . . . . 5 ((ℵ‘𝐵) ∪ (ℵ‘𝐴)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵))
5250, 51breqtrdi 5133 . . . 4 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5344, 52syl 17 . . 3 (ω ⊆ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5442, 53sylbi 217 . 2 (𝐵 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5528, 41, 54pm2.61ii 183 1 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  wss 3903  c0 4284  {csn 4577   class class class wbr 5092   × cxp 5617  dom cdm 5619  Oncon0 6307  cfv 6482  ωcom 7799  1oc1o 8381  cen 8869  cdom 8870  cdju 9794  cardccrd 9831  cale 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-har 9449  df-dju 9797  df-card 9835  df-aleph 9836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator