MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephadd Structured version   Visualization version   GIF version

Theorem alephadd 9999
Description: The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephadd ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))

Proof of Theorem alephadd
StepHypRef Expression
1 fvex 6683 . . . . 5 (ℵ‘𝐴) ∈ V
2 fvex 6683 . . . . 5 (ℵ‘𝐵) ∈ V
3 djuex 9337 . . . . 5 (((ℵ‘𝐴) ∈ V ∧ (ℵ‘𝐵) ∈ V) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V)
41, 2, 3mp2an 690 . . . 4 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V
5 alephfnon 9491 . . . . . . . 8 ℵ Fn On
6 fndm 6455 . . . . . . . 8 (ℵ Fn On → dom ℵ = On)
75, 6ax-mp 5 . . . . . . 7 dom ℵ = On
87eleq2i 2904 . . . . . 6 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
98notbii 322 . . . . 5 𝐴 ∈ dom ℵ ↔ ¬ 𝐴 ∈ On)
107eleq2i 2904 . . . . . 6 (𝐵 ∈ dom ℵ ↔ 𝐵 ∈ On)
1110notbii 322 . . . . 5 𝐵 ∈ dom ℵ ↔ ¬ 𝐵 ∈ On)
12 df-dju 9330 . . . . . . 7 (∅ ⊔ ∅) = (({∅} × ∅) ∪ ({1o} × ∅))
13 xpundir 5621 . . . . . . 7 (({∅} ∪ {1o}) × ∅) = (({∅} × ∅) ∪ ({1o} × ∅))
14 xp0 6015 . . . . . . 7 (({∅} ∪ {1o}) × ∅) = ∅
1512, 13, 143eqtr2i 2850 . . . . . 6 (∅ ⊔ ∅) = ∅
16 ndmfv 6700 . . . . . . 7 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
17 ndmfv 6700 . . . . . . 7 𝐵 ∈ dom ℵ → (ℵ‘𝐵) = ∅)
18 djueq12 9333 . . . . . . 7 (((ℵ‘𝐴) = ∅ ∧ (ℵ‘𝐵) = ∅) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = (∅ ⊔ ∅))
1916, 17, 18syl2an 597 . . . . . 6 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = (∅ ⊔ ∅))
2016adantr 483 . . . . . . . 8 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → (ℵ‘𝐴) = ∅)
2117adantl 484 . . . . . . . 8 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → (ℵ‘𝐵) = ∅)
2220, 21uneq12d 4140 . . . . . . 7 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) = (∅ ∪ ∅))
23 un0 4344 . . . . . . 7 (∅ ∪ ∅) = ∅
2422, 23syl6eq 2872 . . . . . 6 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) = ∅)
2515, 19, 243eqtr4a 2882 . . . . 5 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
269, 11, 25syl2anbr 600 . . . 4 ((¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
27 eqeng 8543 . . . 4 (((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V → (((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))))
284, 26, 27mpsyl 68 . . 3 ((¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
2928ex 415 . 2 𝐴 ∈ On → (¬ 𝐵 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))))
30 alephgeom 9508 . . 3 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
31 ssdomg 8555 . . . . 5 ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
321, 31ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
33 alephon 9495 . . . . . 6 (ℵ‘𝐴) ∈ On
34 onenon 9378 . . . . . 6 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
3533, 34ax-mp 5 . . . . 5 (ℵ‘𝐴) ∈ dom card
36 alephon 9495 . . . . . 6 (ℵ‘𝐵) ∈ On
37 onenon 9378 . . . . . 6 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
3836, 37ax-mp 5 . . . . 5 (ℵ‘𝐵) ∈ dom card
39 infdju 9630 . . . . 5 (((ℵ‘𝐴) ∈ dom card ∧ (ℵ‘𝐵) ∈ dom card ∧ ω ≼ (ℵ‘𝐴)) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4035, 38, 39mp3an12 1447 . . . 4 (ω ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4132, 40syl 17 . . 3 (ω ⊆ (ℵ‘𝐴) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4230, 41sylbi 219 . 2 (𝐴 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
43 alephgeom 9508 . . 3 (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵))
44 ssdomg 8555 . . . . 5 ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)))
452, 44ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵))
46 djucomen 9603 . . . . . . 7 (((ℵ‘𝐴) ∈ V ∧ (ℵ‘𝐵) ∈ V) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)))
471, 2, 46mp2an 690 . . . . . 6 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴))
48 infdju 9630 . . . . . . 7 (((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐵)) → ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
4938, 35, 48mp3an12 1447 . . . . . 6 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
50 entr 8561 . . . . . 6 ((((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ∧ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴))) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
5147, 49, 50sylancr 589 . . . . 5 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
52 uncom 4129 . . . . 5 ((ℵ‘𝐵) ∪ (ℵ‘𝐴)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵))
5351, 52breqtrdi 5107 . . . 4 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5445, 53syl 17 . . 3 (ω ⊆ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5543, 54sylbi 219 . 2 (𝐵 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5629, 42, 55pm2.61ii 185 1 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cun 3934  wss 3936  c0 4291  {csn 4567   class class class wbr 5066   × cxp 5553  dom cdm 5555  Oncon0 6191   Fn wfn 6350  cfv 6355  ωcom 7580  1oc1o 8095  cen 8506  cdom 8507  cdju 9327  cardccrd 9364  cale 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-oi 8974  df-har 9022  df-dju 9330  df-card 9368  df-aleph 9369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator