MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephadd Structured version   Visualization version   GIF version

Theorem alephadd 10156
Description: The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephadd ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))

Proof of Theorem alephadd
StepHypRef Expression
1 fvex 6708 . . . . 5 (ℵ‘𝐴) ∈ V
2 fvex 6708 . . . . 5 (ℵ‘𝐵) ∈ V
3 djuex 9489 . . . . 5 (((ℵ‘𝐴) ∈ V ∧ (ℵ‘𝐵) ∈ V) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V)
41, 2, 3mp2an 692 . . . 4 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V
5 alephfnon 9644 . . . . . . . 8 ℵ Fn On
65fndmi 6460 . . . . . . 7 dom ℵ = On
76eleq2i 2822 . . . . . 6 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
87notbii 323 . . . . 5 𝐴 ∈ dom ℵ ↔ ¬ 𝐴 ∈ On)
96eleq2i 2822 . . . . . 6 (𝐵 ∈ dom ℵ ↔ 𝐵 ∈ On)
109notbii 323 . . . . 5 𝐵 ∈ dom ℵ ↔ ¬ 𝐵 ∈ On)
11 df-dju 9482 . . . . . . 7 (∅ ⊔ ∅) = (({∅} × ∅) ∪ ({1o} × ∅))
12 xpundir 5603 . . . . . . 7 (({∅} ∪ {1o}) × ∅) = (({∅} × ∅) ∪ ({1o} × ∅))
13 xp0 6001 . . . . . . 7 (({∅} ∪ {1o}) × ∅) = ∅
1411, 12, 133eqtr2i 2765 . . . . . 6 (∅ ⊔ ∅) = ∅
15 ndmfv 6725 . . . . . . 7 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
16 ndmfv 6725 . . . . . . 7 𝐵 ∈ dom ℵ → (ℵ‘𝐵) = ∅)
17 djueq12 9485 . . . . . . 7 (((ℵ‘𝐴) = ∅ ∧ (ℵ‘𝐵) = ∅) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = (∅ ⊔ ∅))
1815, 16, 17syl2an 599 . . . . . 6 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = (∅ ⊔ ∅))
1915adantr 484 . . . . . . . 8 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → (ℵ‘𝐴) = ∅)
2016adantl 485 . . . . . . . 8 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → (ℵ‘𝐵) = ∅)
2119, 20uneq12d 4064 . . . . . . 7 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) = (∅ ∪ ∅))
22 un0 4291 . . . . . . 7 (∅ ∪ ∅) = ∅
2321, 22eqtrdi 2787 . . . . . 6 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) = ∅)
2414, 18, 233eqtr4a 2797 . . . . 5 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
258, 10, 24syl2anbr 602 . . . 4 ((¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
26 eqeng 8640 . . . 4 (((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ∈ V → (((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))))
274, 25, 26mpsyl 68 . . 3 ((¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
2827ex 416 . 2 𝐴 ∈ On → (¬ 𝐵 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))))
29 alephgeom 9661 . . 3 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
30 ssdomg 8652 . . . . 5 ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
311, 30ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
32 alephon 9648 . . . . . 6 (ℵ‘𝐴) ∈ On
33 onenon 9530 . . . . . 6 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
3432, 33ax-mp 5 . . . . 5 (ℵ‘𝐴) ∈ dom card
35 alephon 9648 . . . . . 6 (ℵ‘𝐵) ∈ On
36 onenon 9530 . . . . . 6 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
3735, 36ax-mp 5 . . . . 5 (ℵ‘𝐵) ∈ dom card
38 infdju 9787 . . . . 5 (((ℵ‘𝐴) ∈ dom card ∧ (ℵ‘𝐵) ∈ dom card ∧ ω ≼ (ℵ‘𝐴)) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
3934, 37, 38mp3an12 1453 . . . 4 (ω ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4031, 39syl 17 . . 3 (ω ⊆ (ℵ‘𝐴) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4129, 40sylbi 220 . 2 (𝐴 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
42 alephgeom 9661 . . 3 (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵))
43 ssdomg 8652 . . . . 5 ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)))
442, 43ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵))
45 djucomen 9756 . . . . . . 7 (((ℵ‘𝐴) ∈ V ∧ (ℵ‘𝐵) ∈ V) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)))
461, 2, 45mp2an 692 . . . . . 6 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴))
47 infdju 9787 . . . . . . 7 (((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐵)) → ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
4837, 34, 47mp3an12 1453 . . . . . 6 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
49 entr 8658 . . . . . 6 ((((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ∧ ((ℵ‘𝐵) ⊔ (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴))) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
5046, 48, 49sylancr 590 . . . . 5 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
51 uncom 4053 . . . . 5 ((ℵ‘𝐵) ∪ (ℵ‘𝐴)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵))
5250, 51breqtrdi 5080 . . . 4 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5344, 52syl 17 . . 3 (ω ⊆ (ℵ‘𝐵) → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5442, 53sylbi 220 . 2 (𝐵 ∈ On → ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5528, 41, 54pm2.61ii 186 1 ((ℵ‘𝐴) ⊔ (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  Vcvv 3398  cun 3851  wss 3853  c0 4223  {csn 4527   class class class wbr 5039   × cxp 5534  dom cdm 5536  Oncon0 6191  cfv 6358  ωcom 7622  1oc1o 8173  cen 8601  cdom 8602  cdju 9479  cardccrd 9516  cale 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-oadd 8184  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-oi 9104  df-har 9151  df-dju 9482  df-card 9520  df-aleph 9521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator