| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2820 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | opabbidv 5155 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
| 4 | df-xp 5620 | . 2 ⊢ (𝐶 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
| 5 | df-xp 5620 | . 2 ⊢ (𝐶 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {copab 5151 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5152 df-xp 5620 |
| This theorem is referenced by: xpeq12 5639 xpeq2i 5641 xpeq2d 5644 xpnz 6106 xpdisj2 6109 dmxpss 6118 rnxpid 6120 xpcan 6123 unixp 6229 dfpo2 6243 fconst5 7140 naddcllem 8591 pmvalg 8761 xpcomeng 8982 unxpdom 9143 marypha1 9318 djueq12 9797 dfac5lem3 10016 dfac5lem4 10017 dfac5lem4OLD 10019 hsmexlem8 10315 axdc4uz 13891 hashxp 14341 mamufval 22307 txuni2 23480 txbas 23482 txopn 23517 txrest 23546 txdis 23547 txdis1cn 23550 txtube 23555 txcmplem2 23557 tx1stc 23565 qustgplem 24036 tsmsxplem1 24068 isgrpo 30477 vciOLD 30541 isvclem 30557 issh 31188 hhssablo 31243 hhssnvt 31245 hhsssh 31249 2ndimaxp 32628 txomap 33847 tpr2rico 33925 elsx 34207 mbfmcst 34272 br2base 34282 dya2iocnrect 34294 sxbrsigalem5 34301 0rrv 34464 elima4 35820 finxpeq1 37428 isbnd3 37832 hdmap1fval 41843 csbresgVD 44935 mofeu 48887 functermc 49548 |
| Copyright terms: Public domain | W3C validator |