![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
Ref | Expression |
---|---|
xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2833 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | 1 | anbi2d 629 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | opabbidv 5232 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
4 | df-xp 5706 | . 2 ⊢ (𝐶 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
5 | df-xp 5706 | . 2 ⊢ (𝐶 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
6 | 3, 4, 5 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {copab 5228 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 df-xp 5706 |
This theorem is referenced by: xpeq12 5725 xpeq2i 5727 xpeq2d 5730 xpnz 6190 xpdisj2 6193 dmxpss 6202 rnxpid 6204 xpcan 6207 unixp 6313 dfpo2 6327 fconst5 7243 naddcllem 8732 pmvalg 8895 xpcomeng 9130 unxpdom 9316 marypha1 9503 djueq12 9973 dfac5lem3 10194 dfac5lem4 10195 dfac5lem4OLD 10197 hsmexlem8 10493 axdc4uz 14035 hashxp 14483 mamufval 22417 txuni2 23594 txbas 23596 txopn 23631 txrest 23660 txdis 23661 txdis1cn 23664 txtube 23669 txcmplem2 23671 tx1stc 23679 qustgplem 24150 tsmsxplem1 24182 isgrpo 30529 vciOLD 30593 isvclem 30609 issh 31240 hhssablo 31295 hhssnvt 31297 hhsssh 31301 2ndimaxp 32665 txomap 33780 tpr2rico 33858 elsx 34158 mbfmcst 34224 br2base 34234 dya2iocnrect 34246 sxbrsigalem5 34253 0rrv 34416 elima4 35739 finxpeq1 37352 isbnd3 37744 hdmap1fval 41753 csbresgVD 44866 mofeu 48561 |
Copyright terms: Public domain | W3C validator |