Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
Ref | Expression |
---|---|
xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | 1 | anbi2d 629 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | opabbidv 5140 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
4 | df-xp 5595 | . 2 ⊢ (𝐶 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
5 | df-xp 5595 | . 2 ⊢ (𝐶 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
6 | 3, 4, 5 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {copab 5136 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-opab 5137 df-xp 5595 |
This theorem is referenced by: xpeq12 5614 xpeq2i 5616 xpeq2d 5619 xpnz 6062 xpdisj2 6065 dmxpss 6074 rnxpid 6076 xpcan 6079 unixp 6185 dfpo2 6199 fconst5 7081 pmvalg 8626 xpcomeng 8851 unxpdom 9030 marypha1 9193 djueq12 9662 dfac5lem3 9881 dfac5lem4 9882 hsmexlem8 10180 axdc4uz 13704 hashxp 14149 mamufval 21534 txuni2 22716 txbas 22718 txopn 22753 txrest 22782 txdis 22783 txdis1cn 22786 txtube 22791 txcmplem2 22793 tx1stc 22801 qustgplem 23272 tsmsxplem1 23304 isgrpo 28859 vciOLD 28923 isvclem 28939 issh 29570 hhssablo 29625 hhssnvt 29627 hhsssh 29631 2ndimaxp 30984 txomap 31784 tpr2rico 31862 elsx 32162 mbfmcst 32226 br2base 32236 dya2iocnrect 32248 sxbrsigalem5 32255 0rrv 32418 elima4 33750 naddcllem 33831 finxpeq1 35557 isbnd3 35942 hdmap1fval 39810 csbresgVD 42515 mofeu 46175 |
Copyright terms: Public domain | W3C validator |