![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
Ref | Expression |
---|---|
xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2820 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | 1 | anbi2d 627 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | opabbidv 5215 | . 2 ⊢ (𝐴 = 𝐵 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
4 | df-xp 5683 | . 2 ⊢ (𝐶 × 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
5 | df-xp 5683 | . 2 ⊢ (𝐶 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
6 | 3, 4, 5 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 {copab 5211 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-opab 5212 df-xp 5683 |
This theorem is referenced by: xpeq12 5702 xpeq2i 5704 xpeq2d 5707 xpnz 6159 xpdisj2 6162 dmxpss 6171 rnxpid 6173 xpcan 6176 unixp 6282 dfpo2 6296 fconst5 7210 naddcllem 8679 pmvalg 8835 xpcomeng 9068 unxpdom 9257 marypha1 9433 djueq12 9903 dfac5lem3 10124 dfac5lem4 10125 hsmexlem8 10423 axdc4uz 13955 hashxp 14400 mamufval 22109 txuni2 23291 txbas 23293 txopn 23328 txrest 23357 txdis 23358 txdis1cn 23361 txtube 23366 txcmplem2 23368 tx1stc 23376 qustgplem 23847 tsmsxplem1 23879 isgrpo 30015 vciOLD 30079 isvclem 30095 issh 30726 hhssablo 30781 hhssnvt 30783 hhsssh 30787 2ndimaxp 32137 txomap 33110 tpr2rico 33188 elsx 33488 mbfmcst 33554 br2base 33564 dya2iocnrect 33576 sxbrsigalem5 33583 0rrv 33746 elima4 35049 finxpeq1 36572 isbnd3 36957 hdmap1fval 40972 csbresgVD 43960 mofeu 47603 |
Copyright terms: Public domain | W3C validator |