| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | opabbidv 5173 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
| 4 | df-xp 5644 | . 2 ⊢ (𝐶 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
| 5 | df-xp 5644 | . 2 ⊢ (𝐶 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5169 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: xpeq12 5663 xpeq2i 5665 xpeq2d 5668 xpnz 6132 xpdisj2 6135 dmxpss 6144 rnxpid 6146 xpcan 6149 unixp 6255 dfpo2 6269 fconst5 7180 naddcllem 8640 pmvalg 8810 xpcomeng 9033 unxpdom 9200 marypha1 9385 djueq12 9857 dfac5lem3 10078 dfac5lem4 10079 dfac5lem4OLD 10081 hsmexlem8 10377 axdc4uz 13949 hashxp 14399 mamufval 22279 txuni2 23452 txbas 23454 txopn 23489 txrest 23518 txdis 23519 txdis1cn 23522 txtube 23527 txcmplem2 23529 tx1stc 23537 qustgplem 24008 tsmsxplem1 24040 isgrpo 30426 vciOLD 30490 isvclem 30506 issh 31137 hhssablo 31192 hhssnvt 31194 hhsssh 31198 2ndimaxp 32570 txomap 33824 tpr2rico 33902 elsx 34184 mbfmcst 34250 br2base 34260 dya2iocnrect 34272 sxbrsigalem5 34279 0rrv 34442 elima4 35763 finxpeq1 37374 isbnd3 37778 hdmap1fval 41790 csbresgVD 44884 mofeu 48836 functermc 49497 |
| Copyright terms: Public domain | W3C validator |