![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
Ref | Expression |
---|---|
xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | 1 | anbi2d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | opabbidv 5213 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
4 | df-xp 5694 | . 2 ⊢ (𝐶 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
5 | df-xp 5694 | . 2 ⊢ (𝐶 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
6 | 3, 4, 5 | 3eqtr4g 2799 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {copab 5209 × cxp 5686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-opab 5210 df-xp 5694 |
This theorem is referenced by: xpeq12 5713 xpeq2i 5715 xpeq2d 5718 xpnz 6180 xpdisj2 6183 dmxpss 6192 rnxpid 6194 xpcan 6197 unixp 6303 dfpo2 6317 fconst5 7225 naddcllem 8712 pmvalg 8875 xpcomeng 9102 unxpdom 9286 marypha1 9471 djueq12 9941 dfac5lem3 10162 dfac5lem4 10163 dfac5lem4OLD 10165 hsmexlem8 10461 axdc4uz 14021 hashxp 14469 mamufval 22411 txuni2 23588 txbas 23590 txopn 23625 txrest 23654 txdis 23655 txdis1cn 23658 txtube 23663 txcmplem2 23665 tx1stc 23673 qustgplem 24144 tsmsxplem1 24176 isgrpo 30525 vciOLD 30589 isvclem 30605 issh 31236 hhssablo 31291 hhssnvt 31293 hhsssh 31297 2ndimaxp 32662 txomap 33794 tpr2rico 33872 elsx 34174 mbfmcst 34240 br2base 34250 dya2iocnrect 34262 sxbrsigalem5 34269 0rrv 34432 elima4 35756 finxpeq1 37368 isbnd3 37770 hdmap1fval 41778 csbresgVD 44892 mofeu 48677 |
Copyright terms: Public domain | W3C validator |