| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2818 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | opabbidv 5176 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
| 4 | df-xp 5647 | . 2 ⊢ (𝐶 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
| 5 | df-xp 5647 | . 2 ⊢ (𝐶 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5172 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: xpeq12 5666 xpeq2i 5668 xpeq2d 5671 xpnz 6135 xpdisj2 6138 dmxpss 6147 rnxpid 6149 xpcan 6152 unixp 6258 dfpo2 6272 fconst5 7183 naddcllem 8643 pmvalg 8813 xpcomeng 9038 unxpdom 9207 marypha1 9392 djueq12 9864 dfac5lem3 10085 dfac5lem4 10086 dfac5lem4OLD 10088 hsmexlem8 10384 axdc4uz 13956 hashxp 14406 mamufval 22286 txuni2 23459 txbas 23461 txopn 23496 txrest 23525 txdis 23526 txdis1cn 23529 txtube 23534 txcmplem2 23536 tx1stc 23544 qustgplem 24015 tsmsxplem1 24047 isgrpo 30433 vciOLD 30497 isvclem 30513 issh 31144 hhssablo 31199 hhssnvt 31201 hhsssh 31205 2ndimaxp 32577 txomap 33831 tpr2rico 33909 elsx 34191 mbfmcst 34257 br2base 34267 dya2iocnrect 34279 sxbrsigalem5 34286 0rrv 34449 elima4 35770 finxpeq1 37381 isbnd3 37785 hdmap1fval 41797 csbresgVD 44891 mofeu 48840 functermc 49501 |
| Copyright terms: Public domain | W3C validator |