Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
Ref | Expression |
---|---|
xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | 1 | anbi2d 628 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | opabbidv 5136 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
4 | df-xp 5586 | . 2 ⊢ (𝐶 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
5 | df-xp 5586 | . 2 ⊢ (𝐶 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
6 | 3, 4, 5 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {copab 5132 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-xp 5586 |
This theorem is referenced by: xpeq12 5605 xpeq2i 5607 xpeq2d 5610 xpnz 6051 xpdisj2 6054 dmxpss 6063 rnxpid 6065 xpcan 6068 unixp 6174 dfpo2 6188 fconst5 7063 pmvalg 8584 xpcomeng 8804 unxpdom 8959 marypha1 9123 djueq12 9593 dfac5lem3 9812 dfac5lem4 9813 hsmexlem8 10111 axdc4uz 13632 hashxp 14077 mamufval 21444 txuni2 22624 txbas 22626 txopn 22661 txrest 22690 txdis 22691 txdis1cn 22694 txtube 22699 txcmplem2 22701 tx1stc 22709 qustgplem 23180 tsmsxplem1 23212 isgrpo 28760 vciOLD 28824 isvclem 28840 issh 29471 hhssablo 29526 hhssnvt 29528 hhsssh 29532 2ndimaxp 30885 txomap 31686 tpr2rico 31764 elsx 32062 mbfmcst 32126 br2base 32136 dya2iocnrect 32148 sxbrsigalem5 32155 0rrv 32318 elima4 33656 naddcllem 33758 finxpeq1 35484 isbnd3 35869 hdmap1fval 39737 csbresgVD 42404 mofeu 46063 |
Copyright terms: Public domain | W3C validator |