| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | opabbidv 5158 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
| 4 | df-xp 5625 | . 2 ⊢ (𝐶 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
| 5 | df-xp 5625 | . 2 ⊢ (𝐶 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5154 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5155 df-xp 5625 |
| This theorem is referenced by: xpeq12 5644 xpeq2i 5646 xpeq2d 5649 xpnz 6108 xpdisj2 6111 dmxpss 6120 rnxpid 6122 xpcan 6125 unixp 6230 dfpo2 6244 fconst5 7142 naddcllem 8594 pmvalg 8764 xpcomeng 8986 unxpdom 9148 marypha1 9324 djueq12 9800 dfac5lem3 10019 dfac5lem4 10020 dfac5lem4OLD 10022 hsmexlem8 10318 axdc4uz 13891 hashxp 14341 mamufval 22277 txuni2 23450 txbas 23452 txopn 23487 txrest 23516 txdis 23517 txdis1cn 23520 txtube 23525 txcmplem2 23527 tx1stc 23535 qustgplem 24006 tsmsxplem1 24038 isgrpo 30441 vciOLD 30505 isvclem 30521 issh 31152 hhssablo 31207 hhssnvt 31209 hhsssh 31213 2ndimaxp 32589 txomap 33801 tpr2rico 33879 elsx 34161 mbfmcst 34227 br2base 34237 dya2iocnrect 34249 sxbrsigalem5 34256 0rrv 34419 elima4 35749 finxpeq1 37360 isbnd3 37764 hdmap1fval 41775 csbresgVD 44868 mofeu 48832 functermc 49493 |
| Copyright terms: Public domain | W3C validator |