| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2823 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | opabbidv 5185 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
| 4 | df-xp 5660 | . 2 ⊢ (𝐶 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
| 5 | df-xp 5660 | . 2 ⊢ (𝐶 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2795 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {copab 5181 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: xpeq12 5679 xpeq2i 5681 xpeq2d 5684 xpnz 6148 xpdisj2 6151 dmxpss 6160 rnxpid 6162 xpcan 6165 unixp 6271 dfpo2 6285 fconst5 7198 naddcllem 8688 pmvalg 8851 xpcomeng 9078 unxpdom 9261 marypha1 9446 djueq12 9918 dfac5lem3 10139 dfac5lem4 10140 dfac5lem4OLD 10142 hsmexlem8 10438 axdc4uz 14002 hashxp 14452 mamufval 22330 txuni2 23503 txbas 23505 txopn 23540 txrest 23569 txdis 23570 txdis1cn 23573 txtube 23578 txcmplem2 23580 tx1stc 23588 qustgplem 24059 tsmsxplem1 24091 isgrpo 30478 vciOLD 30542 isvclem 30558 issh 31189 hhssablo 31244 hhssnvt 31246 hhsssh 31250 2ndimaxp 32624 txomap 33865 tpr2rico 33943 elsx 34225 mbfmcst 34291 br2base 34301 dya2iocnrect 34313 sxbrsigalem5 34320 0rrv 34483 elima4 35793 finxpeq1 37404 isbnd3 37808 hdmap1fval 41815 csbresgVD 44919 mofeu 48826 functermc 49393 |
| Copyright terms: Public domain | W3C validator |