![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
Ref | Expression |
---|---|
xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2823 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | 1 | anbi2d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | opabbidv 5215 | . 2 ⊢ (𝐴 = 𝐵 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
4 | df-xp 5683 | . 2 ⊢ (𝐶 × 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
5 | df-xp 5683 | . 2 ⊢ (𝐶 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
6 | 3, 4, 5 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {copab 5211 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-opab 5212 df-xp 5683 |
This theorem is referenced by: xpeq12 5702 xpeq2i 5704 xpeq2d 5707 xpnz 6159 xpdisj2 6162 dmxpss 6171 rnxpid 6173 xpcan 6176 unixp 6282 dfpo2 6296 fconst5 7207 naddcllem 8675 pmvalg 8831 xpcomeng 9064 unxpdom 9253 marypha1 9429 djueq12 9899 dfac5lem3 10120 dfac5lem4 10121 hsmexlem8 10419 axdc4uz 13949 hashxp 14394 mamufval 21887 txuni2 23069 txbas 23071 txopn 23106 txrest 23135 txdis 23136 txdis1cn 23139 txtube 23144 txcmplem2 23146 tx1stc 23154 qustgplem 23625 tsmsxplem1 23657 isgrpo 29750 vciOLD 29814 isvclem 29830 issh 30461 hhssablo 30516 hhssnvt 30518 hhsssh 30522 2ndimaxp 31872 txomap 32814 tpr2rico 32892 elsx 33192 mbfmcst 33258 br2base 33268 dya2iocnrect 33280 sxbrsigalem5 33287 0rrv 33450 elima4 34747 finxpeq1 36267 isbnd3 36652 hdmap1fval 40667 csbresgVD 43656 mofeu 47514 |
Copyright terms: Public domain | W3C validator |