| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | opabbidv 5168 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)}) |
| 4 | df-xp 5637 | . 2 ⊢ (𝐶 × 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐴)} | |
| 5 | df-xp 5637 | . 2 ⊢ (𝐶 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐵)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5164 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: xpeq12 5656 xpeq2i 5658 xpeq2d 5661 xpnz 6120 xpdisj2 6123 dmxpss 6132 rnxpid 6134 xpcan 6137 unixp 6243 dfpo2 6257 fconst5 7162 naddcllem 8617 pmvalg 8787 xpcomeng 9010 unxpdom 9176 marypha1 9361 djueq12 9833 dfac5lem3 10054 dfac5lem4 10055 dfac5lem4OLD 10057 hsmexlem8 10353 axdc4uz 13925 hashxp 14375 mamufval 22255 txuni2 23428 txbas 23430 txopn 23465 txrest 23494 txdis 23495 txdis1cn 23498 txtube 23503 txcmplem2 23505 tx1stc 23513 qustgplem 23984 tsmsxplem1 24016 isgrpo 30399 vciOLD 30463 isvclem 30479 issh 31110 hhssablo 31165 hhssnvt 31167 hhsssh 31171 2ndimaxp 32543 txomap 33797 tpr2rico 33875 elsx 34157 mbfmcst 34223 br2base 34233 dya2iocnrect 34245 sxbrsigalem5 34252 0rrv 34415 elima4 35736 finxpeq1 37347 isbnd3 37751 hdmap1fval 41763 csbresgVD 44857 mofeu 48809 functermc 49470 |
| Copyright terms: Public domain | W3C validator |