![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2902 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfel 2917 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1779 ∈ wcel 2105 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-cleq 2726 df-clel 2813 df-nfc 2889 |
This theorem is referenced by: elabgtOLDOLD 3673 elabgOLD 3677 eliunxp 5850 opeliunxp2 5851 tz6.12f 6932 riotaxfrd 7421 opeliunxp2f 8233 cbvixp 8952 boxcutc 8979 ixpiunwdom 9627 rankidb 9837 rankuni2b 9890 acni2 10083 ac6c4 10518 iundom2g 10577 tskuni 10820 reuccatpfxs1 14781 gsumcom2 20007 gsummatr01lem4 22679 ptclsg 23638 cnextfvval 24088 prdsdsf 24392 nnindf 32825 gsumpart 33042 nsgqusf1olem1 33420 nsgqusf1olem3 33422 bnj1463 35047 fineqvrep 35087 ptrest 37605 sdclem1 37729 eqrelf 38236 binomcxplemnotnn0 44351 eliin2f 45043 stoweidlem26 45981 stoweidlem36 45991 stoweidlem46 46001 stoweidlem51 46006 sge0f1o 46337 finfdm 46801 eliunxp2 48178 setrec1 48921 |
Copyright terms: Public domain | W3C validator |