![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfel 2923 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-cleq 2732 df-clel 2819 df-nfc 2895 |
This theorem is referenced by: elabgtOLDOLD 3687 elabgOLD 3691 0nelopabOLD 5587 eliunxp 5862 opeliunxp2 5863 tz6.12f 6946 riotaxfrd 7439 opeliunxp2f 8251 cbvixp 8972 boxcutc 8999 ixpiunwdom 9659 rankidb 9869 rankuni2b 9922 acni2 10115 ac6c4 10550 iundom2g 10609 tskuni 10852 reuccatpfxs1 14795 gsumcom2 20017 gsummatr01lem4 22685 ptclsg 23644 cnextfvval 24094 prdsdsf 24398 nnindf 32823 gsumpart 33038 nsgqusf1olem1 33406 nsgqusf1olem3 33408 bnj1463 35031 fineqvrep 35071 ptrest 37579 sdclem1 37703 eqrelf 38211 binomcxplemnotnn0 44325 eliin2f 45006 stoweidlem26 45947 stoweidlem36 45957 stoweidlem46 45967 stoweidlem51 45972 finfdm 46767 eliunxp2 48058 setrec1 48783 |
Copyright terms: Public domain | W3C validator |