| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2907 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2722 df-clel 2804 df-nfc 2879 |
| This theorem is referenced by: eliunxp 5804 opeliunxp2 5805 tz6.12f 6887 riotaxfrd 7381 opeliunxp2f 8192 cbvixp 8890 boxcutc 8917 ixpiunwdom 9550 rankidb 9760 rankuni2b 9813 acni2 10006 ac6c4 10441 iundom2g 10500 tskuni 10743 reuccatpfxs1 14719 gsumcom2 19912 gsummatr01lem4 22552 ptclsg 23509 cnextfvval 23959 prdsdsf 24262 nnindf 32751 gsumpart 33004 nsgqusf1olem1 33391 nsgqusf1olem3 33393 bnj1463 35052 fineqvrep 35092 ptrest 37620 sdclem1 37744 eqrelf 38251 binomcxplemnotnn0 44352 eliin2f 45105 stoweidlem26 46031 stoweidlem36 46041 stoweidlem46 46051 stoweidlem51 46056 sge0f1o 46387 finfdm 46851 eliunxp2 48326 setrec1 49684 |
| Copyright terms: Public domain | W3C validator |