| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2906 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-clel 2803 df-nfc 2878 |
| This theorem is referenced by: eliunxp 5791 opeliunxp2 5792 tz6.12f 6866 riotaxfrd 7360 opeliunxp2f 8166 cbvixp 8864 boxcutc 8891 ixpiunwdom 9519 rankidb 9729 rankuni2b 9782 acni2 9975 ac6c4 10410 iundom2g 10469 tskuni 10712 reuccatpfxs1 14688 gsumcom2 19881 gsummatr01lem4 22521 ptclsg 23478 cnextfvval 23928 prdsdsf 24231 nnindf 32717 gsumpart 32970 nsgqusf1olem1 33357 nsgqusf1olem3 33359 bnj1463 35018 fineqvrep 35058 ptrest 37586 sdclem1 37710 eqrelf 38217 binomcxplemnotnn0 44318 eliin2f 45071 stoweidlem26 45997 stoweidlem36 46007 stoweidlem46 46017 stoweidlem51 46022 sge0f1o 46353 finfdm 46817 eliunxp2 48295 setrec1 49653 |
| Copyright terms: Public domain | W3C validator |