| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2906 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-clel 2803 df-nfc 2878 |
| This theorem is referenced by: eliunxp 5801 opeliunxp2 5802 tz6.12f 6884 riotaxfrd 7378 opeliunxp2f 8189 cbvixp 8887 boxcutc 8914 ixpiunwdom 9543 rankidb 9753 rankuni2b 9806 acni2 9999 ac6c4 10434 iundom2g 10493 tskuni 10736 reuccatpfxs1 14712 gsumcom2 19905 gsummatr01lem4 22545 ptclsg 23502 cnextfvval 23952 prdsdsf 24255 nnindf 32744 gsumpart 32997 nsgqusf1olem1 33384 nsgqusf1olem3 33386 bnj1463 35045 fineqvrep 35085 ptrest 37613 sdclem1 37737 eqrelf 38244 binomcxplemnotnn0 44345 eliin2f 45098 stoweidlem26 46024 stoweidlem36 46034 stoweidlem46 46044 stoweidlem51 46049 sge0f1o 46380 finfdm 46844 eliunxp2 48322 setrec1 49680 |
| Copyright terms: Public domain | W3C validator |