| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2909 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-cleq 2723 df-clel 2806 df-nfc 2881 |
| This theorem is referenced by: eliunxp 5772 opeliunxp2 5773 tz6.12f 6842 riotaxfrd 7332 opeliunxp2f 8135 cbvixp 8833 boxcutc 8860 ixpiunwdom 9471 rankidb 9688 rankuni2b 9741 acni2 9932 ac6c4 10367 iundom2g 10426 tskuni 10669 reuccatpfxs1 14649 gsumcom2 19882 gsummatr01lem4 22568 ptclsg 23525 cnextfvval 23975 prdsdsf 24277 nnindf 32794 gsumpart 33029 nsgqusf1olem1 33370 nsgqusf1olem3 33372 bnj1463 35059 fineqvrep 35129 ptrest 37659 sdclem1 37783 eqrelf 38290 binomcxplemnotnn0 44389 eliin2f 45141 stoweidlem26 46064 stoweidlem36 46074 stoweidlem46 46084 stoweidlem51 46089 sge0f1o 46420 finfdm 46884 eliunxp2 48365 setrec1 49723 |
| Copyright terms: Public domain | W3C validator |