Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfel 2920 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-cleq 2730 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: elabgtOLD 3597 elabgOLD 3601 0nelopabOLD 5472 eliunxp 5735 opeliunxp2 5736 tz6.12f 6780 riotaxfrd 7247 opeliunxp2f 7997 cbvixp 8660 boxcutc 8687 ixpiunwdom 9279 rankidb 9489 rankuni2b 9542 acni2 9733 ac6c4 10168 iundom2g 10227 tskuni 10470 reuccatpfxs1 14388 gsumcom2 19491 gsummatr01lem4 21715 ptclsg 22674 cnextfvval 23124 prdsdsf 23428 nnindf 31035 gsumpart 31217 nsgqusf1olem1 31500 nsgqusf1olem3 31502 bnj1463 32935 fineqvrep 32964 ptrest 35703 sdclem1 35828 eqrelf 36322 binomcxplemnotnn0 41863 eliin2f 42543 stoweidlem26 43457 stoweidlem36 43467 stoweidlem46 43477 stoweidlem51 43482 eliunxp2 45557 setrec1 46283 |
Copyright terms: Public domain | W3C validator |