Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfel 2921 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-cleq 2730 df-clel 2816 df-nfc 2889 |
This theorem is referenced by: elabgtOLD 3604 elabgOLD 3608 0nelopabOLD 5481 eliunxp 5746 opeliunxp2 5747 tz6.12f 6798 riotaxfrd 7267 opeliunxp2f 8026 cbvixp 8702 boxcutc 8729 ixpiunwdom 9349 rankidb 9558 rankuni2b 9611 acni2 9802 ac6c4 10237 iundom2g 10296 tskuni 10539 reuccatpfxs1 14460 gsumcom2 19576 gsummatr01lem4 21807 ptclsg 22766 cnextfvval 23216 prdsdsf 23520 nnindf 31133 gsumpart 31315 nsgqusf1olem1 31598 nsgqusf1olem3 31600 bnj1463 33035 fineqvrep 33064 ptrest 35776 sdclem1 35901 eqrelf 36395 binomcxplemnotnn0 41974 eliin2f 42654 stoweidlem26 43567 stoweidlem36 43577 stoweidlem46 43587 stoweidlem51 43592 eliunxp2 45669 setrec1 46397 |
Copyright terms: Public domain | W3C validator |