| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2906 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-clel 2803 df-nfc 2878 |
| This theorem is referenced by: eliunxp 5780 opeliunxp2 5781 tz6.12f 6847 riotaxfrd 7340 opeliunxp2f 8143 cbvixp 8841 boxcutc 8868 ixpiunwdom 9482 rankidb 9696 rankuni2b 9749 acni2 9940 ac6c4 10375 iundom2g 10434 tskuni 10677 reuccatpfxs1 14653 gsumcom2 19854 gsummatr01lem4 22543 ptclsg 23500 cnextfvval 23950 prdsdsf 24253 nnindf 32764 gsumpart 33010 nsgqusf1olem1 33350 nsgqusf1olem3 33352 bnj1463 35022 fineqvrep 35070 ptrest 37599 sdclem1 37723 eqrelf 38230 binomcxplemnotnn0 44329 eliin2f 45082 stoweidlem26 46007 stoweidlem36 46017 stoweidlem46 46027 stoweidlem51 46032 sge0f1o 46363 finfdm 46827 eliunxp2 48318 setrec1 49676 |
| Copyright terms: Public domain | W3C validator |