| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2913 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2727 df-clel 2809 df-nfc 2885 |
| This theorem is referenced by: eliunxp 5817 opeliunxp2 5818 tz6.12f 6902 riotaxfrd 7396 opeliunxp2f 8209 cbvixp 8928 boxcutc 8955 ixpiunwdom 9604 rankidb 9814 rankuni2b 9867 acni2 10060 ac6c4 10495 iundom2g 10554 tskuni 10797 reuccatpfxs1 14765 gsumcom2 19956 gsummatr01lem4 22596 ptclsg 23553 cnextfvval 24003 prdsdsf 24306 nnindf 32798 gsumpart 33051 nsgqusf1olem1 33428 nsgqusf1olem3 33430 bnj1463 35086 fineqvrep 35126 ptrest 37643 sdclem1 37767 eqrelf 38273 binomcxplemnotnn0 44380 eliin2f 45128 stoweidlem26 46055 stoweidlem36 46065 stoweidlem46 46075 stoweidlem51 46080 sge0f1o 46411 finfdm 46875 eliunxp2 48309 setrec1 49555 |
| Copyright terms: Public domain | W3C validator |