![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfel2 | Structured version Visualization version GIF version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq2.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfel2 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfeq2.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfel 2918 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-cleq 2725 df-clel 2811 df-nfc 2886 |
This theorem is referenced by: elabgtOLD 3664 elabgOLD 3668 0nelopabOLD 5569 eliunxp 5838 opeliunxp2 5839 tz6.12f 6918 riotaxfrd 7400 opeliunxp2f 8195 cbvixp 8908 boxcutc 8935 ixpiunwdom 9585 rankidb 9795 rankuni2b 9848 acni2 10041 ac6c4 10476 iundom2g 10535 tskuni 10778 reuccatpfxs1 14697 gsumcom2 19843 gsummatr01lem4 22160 ptclsg 23119 cnextfvval 23569 prdsdsf 23873 nnindf 32025 gsumpart 32207 nsgqusf1olem1 32524 nsgqusf1olem3 32526 bnj1463 34066 fineqvrep 34095 ptrest 36487 sdclem1 36611 eqrelf 37123 binomcxplemnotnn0 43115 eliin2f 43793 stoweidlem26 44742 stoweidlem36 44752 stoweidlem46 44762 stoweidlem51 44767 finfdm 45562 eliunxp2 47009 setrec1 47736 |
Copyright terms: Public domain | W3C validator |