![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ela | Structured version Visualization version GIF version |
Description: Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ela | ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . 2 ⊢ (𝑥 = 𝐴 → (0ℋ ⋖ℋ 𝑥 ↔ 0ℋ ⋖ℋ 𝐴)) | |
2 | df-at 32367 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
3 | 1, 2 | elrab2 3698 | 1 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 class class class wbr 5148 Cℋ cch 30958 0ℋc0h 30964 ⋖ℋ ccv 30993 HAtomscat 30994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-at 32367 |
This theorem is referenced by: elat2 32369 elatcv0 32370 atcv0 32371 |
Copyright terms: Public domain | W3C validator |