![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ela | Structured version Visualization version GIF version |
Description: Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ela | ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . 2 ⊢ (𝑥 = 𝐴 → (0ℋ ⋖ℋ 𝑥 ↔ 0ℋ ⋖ℋ 𝐴)) | |
2 | df-at 32370 | . 2 ⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | |
3 | 1, 2 | elrab2 3711 | 1 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 Cℋ cch 30961 0ℋc0h 30967 ⋖ℋ ccv 30996 HAtomscat 30997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-at 32370 |
This theorem is referenced by: elat2 32372 elatcv0 32373 atcv0 32374 |
Copyright terms: Public domain | W3C validator |