HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ela Structured version   Visualization version   GIF version

Theorem ela 30701
Description: Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
ela (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))

Proof of Theorem ela
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq2 5078 . 2 (𝑥 = 𝐴 → (0 𝑥 ↔ 0 𝐴))
2 df-at 30700 . 2 HAtoms = {𝑥C ∣ 0 𝑥}
31, 2elrab2 3627 1 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106   class class class wbr 5074   C cch 29291  0c0h 29297   ccv 29326  HAtomscat 29327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-at 30700
This theorem is referenced by:  elat2  30702  elatcv0  30703  atcv0  30704
  Copyright terms: Public domain W3C validator