HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elatcv0 Structured version   Visualization version   GIF version

Theorem elatcv0 32386
Description: A Hilbert lattice element is an atom iff it covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
elatcv0 (𝐴C → (𝐴 ∈ HAtoms ↔ 0 𝐴))

Proof of Theorem elatcv0
StepHypRef Expression
1 ela 32384 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
21baib 535 1 (𝐴C → (𝐴 ∈ HAtoms ↔ 0 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108   class class class wbr 5151   C cch 30974  0c0h 30980   ccv 31009  HAtomscat 31010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-at 32383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator