![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elatcv0 | Structured version Visualization version GIF version |
Description: A Hilbert lattice element is an atom iff it covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elatcv0 | ⊢ (𝐴 ∈ Cℋ → (𝐴 ∈ HAtoms ↔ 0ℋ ⋖ℋ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ela 32384 | . 2 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | |
2 | 1 | baib 535 | 1 ⊢ (𝐴 ∈ Cℋ → (𝐴 ∈ HAtoms ↔ 0ℋ ⋖ℋ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5151 Cℋ cch 30974 0ℋc0h 30980 ⋖ℋ ccv 31009 HAtomscat 31010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-at 32383 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |