HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elatcv0 Structured version   Visualization version   GIF version

Theorem elatcv0 31594
Description: A Hilbert lattice element is an atom iff it covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
elatcv0 (𝐴C → (𝐴 ∈ HAtoms ↔ 0 𝐴))

Proof of Theorem elatcv0
StepHypRef Expression
1 ela 31592 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
21baib 537 1 (𝐴C → (𝐴 ∈ HAtoms ↔ 0 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2107   class class class wbr 5149   C cch 30182  0c0h 30188   ccv 30217  HAtomscat 30218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-at 31591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator