HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elatcv0 Structured version   Visualization version   GIF version

Theorem elatcv0 32276
Description: A Hilbert lattice element is an atom iff it covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
elatcv0 (𝐴C → (𝐴 ∈ HAtoms ↔ 0 𝐴))

Proof of Theorem elatcv0
StepHypRef Expression
1 ela 32274 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
21baib 535 1 (𝐴C → (𝐴 ∈ HAtoms ↔ 0 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109   class class class wbr 5109   C cch 30864  0c0h 30870   ccv 30899  HAtomscat 30900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-at 32273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator