![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elat2 | Structured version Visualization version GIF version |
Description: Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elat2 | ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ela 31587 | . 2 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | |
2 | h0elch 30503 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
3 | cvbr2 31531 | . . . . 5 ⊢ ((0ℋ ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (0ℋ ⋖ℋ 𝐴 ↔ (0ℋ ⊊ 𝐴 ∧ ∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴)))) | |
4 | 2, 3 | mpan 688 | . . . 4 ⊢ (𝐴 ∈ Cℋ → (0ℋ ⋖ℋ 𝐴 ↔ (0ℋ ⊊ 𝐴 ∧ ∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴)))) |
5 | ch0pss 30693 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) | |
6 | ch0pss 30693 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (0ℋ ⊊ 𝑥 ↔ 𝑥 ≠ 0ℋ)) | |
7 | 6 | imbi1d 341 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → ((0ℋ ⊊ 𝑥 → 𝑥 = 𝐴) ↔ (𝑥 ≠ 0ℋ → 𝑥 = 𝐴))) |
8 | 7 | imbi2d 340 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ⊆ 𝐴 → (0ℋ ⊊ 𝑥 → 𝑥 = 𝐴)) ↔ (𝑥 ⊆ 𝐴 → (𝑥 ≠ 0ℋ → 𝑥 = 𝐴)))) |
9 | impexp 451 | . . . . . . . . 9 ⊢ (((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ (0ℋ ⊊ 𝑥 → (𝑥 ⊆ 𝐴 → 𝑥 = 𝐴))) | |
10 | bi2.04 388 | . . . . . . . . 9 ⊢ ((0ℋ ⊊ 𝑥 → (𝑥 ⊆ 𝐴 → 𝑥 = 𝐴)) ↔ (𝑥 ⊆ 𝐴 → (0ℋ ⊊ 𝑥 → 𝑥 = 𝐴))) | |
11 | 9, 10 | bitri 274 | . . . . . . . 8 ⊢ (((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ (𝑥 ⊆ 𝐴 → (0ℋ ⊊ 𝑥 → 𝑥 = 𝐴))) |
12 | orcom 868 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 0ℋ) ↔ (𝑥 = 0ℋ ∨ 𝑥 = 𝐴)) | |
13 | neor 3034 | . . . . . . . . . 10 ⊢ ((𝑥 = 0ℋ ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 0ℋ → 𝑥 = 𝐴)) | |
14 | 12, 13 | bitri 274 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 0ℋ) ↔ (𝑥 ≠ 0ℋ → 𝑥 = 𝐴)) |
15 | 14 | imbi2i 335 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)) ↔ (𝑥 ⊆ 𝐴 → (𝑥 ≠ 0ℋ → 𝑥 = 𝐴))) |
16 | 8, 11, 15 | 3bitr4g 313 | . . . . . . 7 ⊢ (𝑥 ∈ Cℋ → (((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)))) |
17 | 16 | ralbiia 3091 | . . . . . 6 ⊢ (∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))) |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)))) |
19 | 5, 18 | anbi12d 631 | . . . 4 ⊢ (𝐴 ∈ Cℋ → ((0ℋ ⊊ 𝐴 ∧ ∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴)) ↔ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) |
20 | 4, 19 | bitr2d 279 | . . 3 ⊢ (𝐴 ∈ Cℋ → ((𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))) ↔ 0ℋ ⋖ℋ 𝐴)) |
21 | 20 | pm5.32i 575 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)))) ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) |
22 | 1, 21 | bitr4i 277 | 1 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 ⊆ wss 3948 ⊊ wpss 3949 class class class wbr 5148 Cℋ cch 30177 0ℋc0h 30183 ⋖ℋ ccv 30212 HAtomscat 30213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 ax-hilex 30247 ax-hfvadd 30248 ax-hvcom 30249 ax-hvass 30250 ax-hv0cl 30251 ax-hvaddid 30252 ax-hfvmul 30253 ax-hvmulid 30254 ax-hvmulass 30255 ax-hvdistr1 30256 ax-hvdistr2 30257 ax-hvmul0 30258 ax-hfi 30327 ax-his1 30330 ax-his2 30331 ax-his3 30332 ax-his4 30333 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-icc 13330 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-topgen 17388 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-top 22395 df-topon 22412 df-bases 22448 df-lm 22732 df-haus 22818 df-grpo 29741 df-gid 29742 df-ginv 29743 df-gdiv 29744 df-ablo 29793 df-vc 29807 df-nv 29840 df-va 29843 df-ba 29844 df-sm 29845 df-0v 29846 df-vs 29847 df-nmcv 29848 df-ims 29849 df-hnorm 30216 df-hvsub 30219 df-hlim 30220 df-sh 30455 df-ch 30469 df-ch0 30501 df-cv 31527 df-at 31586 |
This theorem is referenced by: atne0 31593 atss 31594 h1da 31597 atom1d 31601 |
Copyright terms: Public domain | W3C validator |