![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elat2 | Structured version Visualization version GIF version |
Description: Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elat2 | ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ela 29897 | . 2 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | |
2 | h0elch 28811 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
3 | cvbr2 29841 | . . . . 5 ⊢ ((0ℋ ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (0ℋ ⋖ℋ 𝐴 ↔ (0ℋ ⊊ 𝐴 ∧ ∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴)))) | |
4 | 2, 3 | mpan 677 | . . . 4 ⊢ (𝐴 ∈ Cℋ → (0ℋ ⋖ℋ 𝐴 ↔ (0ℋ ⊊ 𝐴 ∧ ∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴)))) |
5 | ch0pss 29003 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) | |
6 | ch0pss 29003 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (0ℋ ⊊ 𝑥 ↔ 𝑥 ≠ 0ℋ)) | |
7 | 6 | imbi1d 334 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → ((0ℋ ⊊ 𝑥 → 𝑥 = 𝐴) ↔ (𝑥 ≠ 0ℋ → 𝑥 = 𝐴))) |
8 | 7 | imbi2d 333 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ⊆ 𝐴 → (0ℋ ⊊ 𝑥 → 𝑥 = 𝐴)) ↔ (𝑥 ⊆ 𝐴 → (𝑥 ≠ 0ℋ → 𝑥 = 𝐴)))) |
9 | impexp 443 | . . . . . . . . 9 ⊢ (((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ (0ℋ ⊊ 𝑥 → (𝑥 ⊆ 𝐴 → 𝑥 = 𝐴))) | |
10 | bi2.04 380 | . . . . . . . . 9 ⊢ ((0ℋ ⊊ 𝑥 → (𝑥 ⊆ 𝐴 → 𝑥 = 𝐴)) ↔ (𝑥 ⊆ 𝐴 → (0ℋ ⊊ 𝑥 → 𝑥 = 𝐴))) | |
11 | 9, 10 | bitri 267 | . . . . . . . 8 ⊢ (((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ (𝑥 ⊆ 𝐴 → (0ℋ ⊊ 𝑥 → 𝑥 = 𝐴))) |
12 | orcom 856 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 0ℋ) ↔ (𝑥 = 0ℋ ∨ 𝑥 = 𝐴)) | |
13 | neor 3059 | . . . . . . . . . 10 ⊢ ((𝑥 = 0ℋ ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 0ℋ → 𝑥 = 𝐴)) | |
14 | 12, 13 | bitri 267 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 0ℋ) ↔ (𝑥 ≠ 0ℋ → 𝑥 = 𝐴)) |
15 | 14 | imbi2i 328 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)) ↔ (𝑥 ⊆ 𝐴 → (𝑥 ≠ 0ℋ → 𝑥 = 𝐴))) |
16 | 8, 11, 15 | 3bitr4g 306 | . . . . . . 7 ⊢ (𝑥 ∈ Cℋ → (((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)))) |
17 | 16 | ralbiia 3114 | . . . . . 6 ⊢ (∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))) |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)))) |
19 | 5, 18 | anbi12d 621 | . . . 4 ⊢ (𝐴 ∈ Cℋ → ((0ℋ ⊊ 𝐴 ∧ ∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴)) ↔ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) |
20 | 4, 19 | bitr2d 272 | . . 3 ⊢ (𝐴 ∈ Cℋ → ((𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))) ↔ 0ℋ ⋖ℋ 𝐴)) |
21 | 20 | pm5.32i 567 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)))) ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) |
22 | 1, 21 | bitr4i 270 | 1 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 833 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∀wral 3088 ⊆ wss 3829 ⊊ wpss 3830 class class class wbr 4929 Cℋ cch 28485 0ℋc0h 28491 ⋖ℋ ccv 28520 HAtomscat 28521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-addf 10414 ax-mulf 10415 ax-hilex 28555 ax-hfvadd 28556 ax-hvcom 28557 ax-hvass 28558 ax-hv0cl 28559 ax-hvaddid 28560 ax-hfvmul 28561 ax-hvmulid 28562 ax-hvmulass 28563 ax-hvdistr1 28564 ax-hvdistr2 28565 ax-hvmul0 28566 ax-hfi 28635 ax-his1 28638 ax-his2 28639 ax-his3 28640 ax-his4 28641 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-map 8208 df-pm 8209 df-en 8307 df-dom 8308 df-sdom 8309 df-sup 8701 df-inf 8702 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-n0 11708 df-z 11794 df-uz 12059 df-q 12163 df-rp 12205 df-xneg 12324 df-xadd 12325 df-xmul 12326 df-icc 12561 df-seq 13185 df-exp 13245 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-topgen 16573 df-psmet 20239 df-xmet 20240 df-met 20241 df-bl 20242 df-mopn 20243 df-top 21206 df-topon 21223 df-bases 21258 df-lm 21541 df-haus 21627 df-grpo 28047 df-gid 28048 df-ginv 28049 df-gdiv 28050 df-ablo 28099 df-vc 28113 df-nv 28146 df-va 28149 df-ba 28150 df-sm 28151 df-0v 28152 df-vs 28153 df-nmcv 28154 df-ims 28155 df-hnorm 28524 df-hvsub 28527 df-hlim 28528 df-sh 28763 df-ch 28777 df-ch0 28809 df-cv 29837 df-at 29896 |
This theorem is referenced by: atne0 29903 atss 29904 h1da 29907 atom1d 29911 |
Copyright terms: Public domain | W3C validator |