| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > elat2 | Structured version Visualization version GIF version | ||
| Description: Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elat2 | ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ela 32283 | . 2 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | |
| 2 | h0elch 31199 | . . . . 5 ⊢ 0ℋ ∈ Cℋ | |
| 3 | cvbr2 32227 | . . . . 5 ⊢ ((0ℋ ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (0ℋ ⋖ℋ 𝐴 ↔ (0ℋ ⊊ 𝐴 ∧ ∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴)))) | |
| 4 | 2, 3 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ Cℋ → (0ℋ ⋖ℋ 𝐴 ↔ (0ℋ ⊊ 𝐴 ∧ ∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴)))) |
| 5 | ch0pss 31389 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (0ℋ ⊊ 𝐴 ↔ 𝐴 ≠ 0ℋ)) | |
| 6 | ch0pss 31389 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (0ℋ ⊊ 𝑥 ↔ 𝑥 ≠ 0ℋ)) | |
| 7 | 6 | imbi1d 341 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → ((0ℋ ⊊ 𝑥 → 𝑥 = 𝐴) ↔ (𝑥 ≠ 0ℋ → 𝑥 = 𝐴))) |
| 8 | 7 | imbi2d 340 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ⊆ 𝐴 → (0ℋ ⊊ 𝑥 → 𝑥 = 𝐴)) ↔ (𝑥 ⊆ 𝐴 → (𝑥 ≠ 0ℋ → 𝑥 = 𝐴)))) |
| 9 | impexp 450 | . . . . . . . . 9 ⊢ (((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ (0ℋ ⊊ 𝑥 → (𝑥 ⊆ 𝐴 → 𝑥 = 𝐴))) | |
| 10 | bi2.04 387 | . . . . . . . . 9 ⊢ ((0ℋ ⊊ 𝑥 → (𝑥 ⊆ 𝐴 → 𝑥 = 𝐴)) ↔ (𝑥 ⊆ 𝐴 → (0ℋ ⊊ 𝑥 → 𝑥 = 𝐴))) | |
| 11 | 9, 10 | bitri 275 | . . . . . . . 8 ⊢ (((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ (𝑥 ⊆ 𝐴 → (0ℋ ⊊ 𝑥 → 𝑥 = 𝐴))) |
| 12 | orcom 870 | . . . . . . . . . 10 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 0ℋ) ↔ (𝑥 = 0ℋ ∨ 𝑥 = 𝐴)) | |
| 13 | neor 3017 | . . . . . . . . . 10 ⊢ ((𝑥 = 0ℋ ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 0ℋ → 𝑥 = 𝐴)) | |
| 14 | 12, 13 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 0ℋ) ↔ (𝑥 ≠ 0ℋ → 𝑥 = 𝐴)) |
| 15 | 14 | imbi2i 336 | . . . . . . . 8 ⊢ ((𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)) ↔ (𝑥 ⊆ 𝐴 → (𝑥 ≠ 0ℋ → 𝑥 = 𝐴))) |
| 16 | 8, 11, 15 | 3bitr4g 314 | . . . . . . 7 ⊢ (𝑥 ∈ Cℋ → (((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)))) |
| 17 | 16 | ralbiia 3073 | . . . . . 6 ⊢ (∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))) |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → (∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)))) |
| 19 | 5, 18 | anbi12d 632 | . . . 4 ⊢ (𝐴 ∈ Cℋ → ((0ℋ ⊊ 𝐴 ∧ ∀𝑥 ∈ Cℋ ((0ℋ ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐴) → 𝑥 = 𝐴)) ↔ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) |
| 20 | 4, 19 | bitr2d 280 | . . 3 ⊢ (𝐴 ∈ Cℋ → ((𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))) ↔ 0ℋ ⋖ℋ 𝐴)) |
| 21 | 20 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ)))) ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) |
| 22 | 1, 21 | bitr4i 278 | 1 ⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3903 ⊊ wpss 3904 class class class wbr 5092 Cℋ cch 30873 0ℋc0h 30879 ⋖ℋ ccv 30908 HAtomscat 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 ax-hilex 30943 ax-hfvadd 30944 ax-hvcom 30945 ax-hvass 30946 ax-hv0cl 30947 ax-hvaddid 30948 ax-hfvmul 30949 ax-hvmulid 30950 ax-hvmulass 30951 ax-hvdistr1 30952 ax-hvdistr2 30953 ax-hvmul0 30954 ax-hfi 31023 ax-his1 31026 ax-his2 31027 ax-his3 31028 ax-his4 31029 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-icc 13255 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-bases 22831 df-lm 23114 df-haus 23200 df-grpo 30437 df-gid 30438 df-ginv 30439 df-gdiv 30440 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-vs 30543 df-nmcv 30544 df-ims 30545 df-hnorm 30912 df-hvsub 30915 df-hlim 30916 df-sh 31151 df-ch 31165 df-ch0 31197 df-cv 32223 df-at 32282 |
| This theorem is referenced by: atne0 32289 atss 32290 h1da 32293 atom1d 32297 |
| Copyright terms: Public domain | W3C validator |