HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elat2 Structured version   Visualization version   GIF version

Theorem elat2 31588
Description: Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
elat2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elat2
StepHypRef Expression
1 ela 31587 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
2 h0elch 30503 . . . . 5 0C
3 cvbr2 31531 . . . . 5 ((0C𝐴C ) → (0 𝐴 ↔ (0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴))))
42, 3mpan 688 . . . 4 (𝐴C → (0 𝐴 ↔ (0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴))))
5 ch0pss 30693 . . . . 5 (𝐴C → (0𝐴𝐴 ≠ 0))
6 ch0pss 30693 . . . . . . . . . 10 (𝑥C → (0𝑥𝑥 ≠ 0))
76imbi1d 341 . . . . . . . . 9 (𝑥C → ((0𝑥𝑥 = 𝐴) ↔ (𝑥 ≠ 0𝑥 = 𝐴)))
87imbi2d 340 . . . . . . . 8 (𝑥C → ((𝑥𝐴 → (0𝑥𝑥 = 𝐴)) ↔ (𝑥𝐴 → (𝑥 ≠ 0𝑥 = 𝐴))))
9 impexp 451 . . . . . . . . 9 (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (0𝑥 → (𝑥𝐴𝑥 = 𝐴)))
10 bi2.04 388 . . . . . . . . 9 ((0𝑥 → (𝑥𝐴𝑥 = 𝐴)) ↔ (𝑥𝐴 → (0𝑥𝑥 = 𝐴)))
119, 10bitri 274 . . . . . . . 8 (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (𝑥𝐴 → (0𝑥𝑥 = 𝐴)))
12 orcom 868 . . . . . . . . . 10 ((𝑥 = 𝐴𝑥 = 0) ↔ (𝑥 = 0𝑥 = 𝐴))
13 neor 3034 . . . . . . . . . 10 ((𝑥 = 0𝑥 = 𝐴) ↔ (𝑥 ≠ 0𝑥 = 𝐴))
1412, 13bitri 274 . . . . . . . . 9 ((𝑥 = 𝐴𝑥 = 0) ↔ (𝑥 ≠ 0𝑥 = 𝐴))
1514imbi2i 335 . . . . . . . 8 ((𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)) ↔ (𝑥𝐴 → (𝑥 ≠ 0𝑥 = 𝐴)))
168, 11, 153bitr4g 313 . . . . . . 7 (𝑥C → (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))))
1716ralbiia 3091 . . . . . 6 (∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))
1817a1i 11 . . . . 5 (𝐴C → (∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))))
195, 18anbi12d 631 . . . 4 (𝐴C → ((0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴)) ↔ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
204, 19bitr2d 279 . . 3 (𝐴C → ((𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))) ↔ 0 𝐴))
2120pm5.32i 575 . 2 ((𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))) ↔ (𝐴C ∧ 0 𝐴))
221, 21bitr4i 277 1 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wral 3061  wss 3948  wpss 3949   class class class wbr 5148   C cch 30177  0c0h 30183   ccv 30212  HAtomscat 30213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188  ax-mulf 11189  ax-hilex 30247  ax-hfvadd 30248  ax-hvcom 30249  ax-hvass 30250  ax-hv0cl 30251  ax-hvaddid 30252  ax-hfvmul 30253  ax-hvmulid 30254  ax-hvmulass 30255  ax-hvdistr1 30256  ax-hvdistr2 30257  ax-hvmul0 30258  ax-hfi 30327  ax-his1 30330  ax-his2 30331  ax-his3 30332  ax-his4 30333
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-icc 13330  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-top 22395  df-topon 22412  df-bases 22448  df-lm 22732  df-haus 22818  df-grpo 29741  df-gid 29742  df-ginv 29743  df-gdiv 29744  df-ablo 29793  df-vc 29807  df-nv 29840  df-va 29843  df-ba 29844  df-sm 29845  df-0v 29846  df-vs 29847  df-nmcv 29848  df-ims 29849  df-hnorm 30216  df-hvsub 30219  df-hlim 30220  df-sh 30455  df-ch 30469  df-ch0 30501  df-cv 31527  df-at 31586
This theorem is referenced by:  atne0  31593  atss  31594  h1da  31597  atom1d  31601
  Copyright terms: Public domain W3C validator