HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elat2 Structured version   Visualization version   GIF version

Theorem elat2 31558
Description: Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
elat2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elat2
StepHypRef Expression
1 ela 31557 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
2 h0elch 30473 . . . . 5 0C
3 cvbr2 31501 . . . . 5 ((0C𝐴C ) → (0 𝐴 ↔ (0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴))))
42, 3mpan 689 . . . 4 (𝐴C → (0 𝐴 ↔ (0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴))))
5 ch0pss 30663 . . . . 5 (𝐴C → (0𝐴𝐴 ≠ 0))
6 ch0pss 30663 . . . . . . . . . 10 (𝑥C → (0𝑥𝑥 ≠ 0))
76imbi1d 342 . . . . . . . . 9 (𝑥C → ((0𝑥𝑥 = 𝐴) ↔ (𝑥 ≠ 0𝑥 = 𝐴)))
87imbi2d 341 . . . . . . . 8 (𝑥C → ((𝑥𝐴 → (0𝑥𝑥 = 𝐴)) ↔ (𝑥𝐴 → (𝑥 ≠ 0𝑥 = 𝐴))))
9 impexp 452 . . . . . . . . 9 (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (0𝑥 → (𝑥𝐴𝑥 = 𝐴)))
10 bi2.04 389 . . . . . . . . 9 ((0𝑥 → (𝑥𝐴𝑥 = 𝐴)) ↔ (𝑥𝐴 → (0𝑥𝑥 = 𝐴)))
119, 10bitri 275 . . . . . . . 8 (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (𝑥𝐴 → (0𝑥𝑥 = 𝐴)))
12 orcom 869 . . . . . . . . . 10 ((𝑥 = 𝐴𝑥 = 0) ↔ (𝑥 = 0𝑥 = 𝐴))
13 neor 3035 . . . . . . . . . 10 ((𝑥 = 0𝑥 = 𝐴) ↔ (𝑥 ≠ 0𝑥 = 𝐴))
1412, 13bitri 275 . . . . . . . . 9 ((𝑥 = 𝐴𝑥 = 0) ↔ (𝑥 ≠ 0𝑥 = 𝐴))
1514imbi2i 336 . . . . . . . 8 ((𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)) ↔ (𝑥𝐴 → (𝑥 ≠ 0𝑥 = 𝐴)))
168, 11, 153bitr4g 314 . . . . . . 7 (𝑥C → (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))))
1716ralbiia 3092 . . . . . 6 (∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))
1817a1i 11 . . . . 5 (𝐴C → (∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))))
195, 18anbi12d 632 . . . 4 (𝐴C → ((0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴)) ↔ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
204, 19bitr2d 280 . . 3 (𝐴C → ((𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))) ↔ 0 𝐴))
2120pm5.32i 576 . 2 ((𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))) ↔ (𝐴C ∧ 0 𝐴))
221, 21bitr4i 278 1 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  wral 3062  wss 3946  wpss 3947   class class class wbr 5144   C cch 30147  0c0h 30153   ccv 30182  HAtomscat 30183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174  ax-pre-sup 11175  ax-addf 11176  ax-mulf 11177  ax-hilex 30217  ax-hfvadd 30218  ax-hvcom 30219  ax-hvass 30220  ax-hv0cl 30221  ax-hvaddid 30222  ax-hfvmul 30223  ax-hvmulid 30224  ax-hvmulass 30225  ax-hvdistr1 30226  ax-hvdistr2 30227  ax-hvmul0 30228  ax-hfi 30297  ax-his1 30300  ax-his2 30301  ax-his3 30302  ax-his4 30303
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-map 8810  df-pm 8811  df-en 8928  df-dom 8929  df-sdom 8930  df-sup 9424  df-inf 9425  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-n0 12460  df-z 12546  df-uz 12810  df-q 12920  df-rp 12962  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13318  df-seq 13954  df-exp 14015  df-cj 15033  df-re 15034  df-im 15035  df-sqrt 15169  df-abs 15170  df-topgen 17376  df-psmet 20910  df-xmet 20911  df-met 20912  df-bl 20913  df-mopn 20914  df-top 22365  df-topon 22382  df-bases 22418  df-lm 22702  df-haus 22788  df-grpo 29711  df-gid 29712  df-ginv 29713  df-gdiv 29714  df-ablo 29763  df-vc 29777  df-nv 29810  df-va 29813  df-ba 29814  df-sm 29815  df-0v 29816  df-vs 29817  df-nmcv 29818  df-ims 29819  df-hnorm 30186  df-hvsub 30189  df-hlim 30190  df-sh 30425  df-ch 30439  df-ch0 30471  df-cv 31497  df-at 31556
This theorem is referenced by:  atne0  31563  atss  31564  h1da  31567  atom1d  31571
  Copyright terms: Public domain W3C validator