HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elat2 Structured version   Visualization version   GIF version

Theorem elat2 31324
Description: Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
elat2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elat2
StepHypRef Expression
1 ela 31323 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
2 h0elch 30239 . . . . 5 0C
3 cvbr2 31267 . . . . 5 ((0C𝐴C ) → (0 𝐴 ↔ (0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴))))
42, 3mpan 689 . . . 4 (𝐴C → (0 𝐴 ↔ (0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴))))
5 ch0pss 30429 . . . . 5 (𝐴C → (0𝐴𝐴 ≠ 0))
6 ch0pss 30429 . . . . . . . . . 10 (𝑥C → (0𝑥𝑥 ≠ 0))
76imbi1d 342 . . . . . . . . 9 (𝑥C → ((0𝑥𝑥 = 𝐴) ↔ (𝑥 ≠ 0𝑥 = 𝐴)))
87imbi2d 341 . . . . . . . 8 (𝑥C → ((𝑥𝐴 → (0𝑥𝑥 = 𝐴)) ↔ (𝑥𝐴 → (𝑥 ≠ 0𝑥 = 𝐴))))
9 impexp 452 . . . . . . . . 9 (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (0𝑥 → (𝑥𝐴𝑥 = 𝐴)))
10 bi2.04 389 . . . . . . . . 9 ((0𝑥 → (𝑥𝐴𝑥 = 𝐴)) ↔ (𝑥𝐴 → (0𝑥𝑥 = 𝐴)))
119, 10bitri 275 . . . . . . . 8 (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (𝑥𝐴 → (0𝑥𝑥 = 𝐴)))
12 orcom 869 . . . . . . . . . 10 ((𝑥 = 𝐴𝑥 = 0) ↔ (𝑥 = 0𝑥 = 𝐴))
13 neor 3033 . . . . . . . . . 10 ((𝑥 = 0𝑥 = 𝐴) ↔ (𝑥 ≠ 0𝑥 = 𝐴))
1412, 13bitri 275 . . . . . . . . 9 ((𝑥 = 𝐴𝑥 = 0) ↔ (𝑥 ≠ 0𝑥 = 𝐴))
1514imbi2i 336 . . . . . . . 8 ((𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)) ↔ (𝑥𝐴 → (𝑥 ≠ 0𝑥 = 𝐴)))
168, 11, 153bitr4g 314 . . . . . . 7 (𝑥C → (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))))
1716ralbiia 3091 . . . . . 6 (∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))
1817a1i 11 . . . . 5 (𝐴C → (∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))))
195, 18anbi12d 632 . . . 4 (𝐴C → ((0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴)) ↔ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
204, 19bitr2d 280 . . 3 (𝐴C → ((𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))) ↔ 0 𝐴))
2120pm5.32i 576 . 2 ((𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))) ↔ (𝐴C ∧ 0 𝐴))
221, 21bitr4i 278 1 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2940  wral 3061  wss 3911  wpss 3912   class class class wbr 5106   C cch 29913  0c0h 29919   ccv 29948  HAtomscat 29949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134  ax-addf 11135  ax-mulf 11136  ax-hilex 29983  ax-hfvadd 29984  ax-hvcom 29985  ax-hvass 29986  ax-hv0cl 29987  ax-hvaddid 29988  ax-hfvmul 29989  ax-hvmulid 29990  ax-hvmulass 29991  ax-hvdistr1 29992  ax-hvdistr2 29993  ax-hvmul0 29994  ax-hfi 30063  ax-his1 30066  ax-his2 30067  ax-his3 30068  ax-his4 30069
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-map 8770  df-pm 8771  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-inf 9384  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-n0 12419  df-z 12505  df-uz 12769  df-q 12879  df-rp 12921  df-xneg 13038  df-xadd 13039  df-xmul 13040  df-icc 13277  df-seq 13913  df-exp 13974  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-topgen 17330  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-top 22259  df-topon 22276  df-bases 22312  df-lm 22596  df-haus 22682  df-grpo 29477  df-gid 29478  df-ginv 29479  df-gdiv 29480  df-ablo 29529  df-vc 29543  df-nv 29576  df-va 29579  df-ba 29580  df-sm 29581  df-0v 29582  df-vs 29583  df-nmcv 29584  df-ims 29585  df-hnorm 29952  df-hvsub 29955  df-hlim 29956  df-sh 30191  df-ch 30205  df-ch0 30237  df-cv 31263  df-at 31322
This theorem is referenced by:  atne0  31329  atss  31330  h1da  31333  atom1d  31337
  Copyright terms: Public domain W3C validator