HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elat2 Structured version   Visualization version   GIF version

Theorem elat2 32276
Description: Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
elat2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elat2
StepHypRef Expression
1 ela 32275 . 2 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ 0 𝐴))
2 h0elch 31191 . . . . 5 0C
3 cvbr2 32219 . . . . 5 ((0C𝐴C ) → (0 𝐴 ↔ (0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴))))
42, 3mpan 690 . . . 4 (𝐴C → (0 𝐴 ↔ (0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴))))
5 ch0pss 31381 . . . . 5 (𝐴C → (0𝐴𝐴 ≠ 0))
6 ch0pss 31381 . . . . . . . . . 10 (𝑥C → (0𝑥𝑥 ≠ 0))
76imbi1d 341 . . . . . . . . 9 (𝑥C → ((0𝑥𝑥 = 𝐴) ↔ (𝑥 ≠ 0𝑥 = 𝐴)))
87imbi2d 340 . . . . . . . 8 (𝑥C → ((𝑥𝐴 → (0𝑥𝑥 = 𝐴)) ↔ (𝑥𝐴 → (𝑥 ≠ 0𝑥 = 𝐴))))
9 impexp 450 . . . . . . . . 9 (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (0𝑥 → (𝑥𝐴𝑥 = 𝐴)))
10 bi2.04 387 . . . . . . . . 9 ((0𝑥 → (𝑥𝐴𝑥 = 𝐴)) ↔ (𝑥𝐴 → (0𝑥𝑥 = 𝐴)))
119, 10bitri 275 . . . . . . . 8 (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (𝑥𝐴 → (0𝑥𝑥 = 𝐴)))
12 orcom 870 . . . . . . . . . 10 ((𝑥 = 𝐴𝑥 = 0) ↔ (𝑥 = 0𝑥 = 𝐴))
13 neor 3018 . . . . . . . . . 10 ((𝑥 = 0𝑥 = 𝐴) ↔ (𝑥 ≠ 0𝑥 = 𝐴))
1412, 13bitri 275 . . . . . . . . 9 ((𝑥 = 𝐴𝑥 = 0) ↔ (𝑥 ≠ 0𝑥 = 𝐴))
1514imbi2i 336 . . . . . . . 8 ((𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)) ↔ (𝑥𝐴 → (𝑥 ≠ 0𝑥 = 𝐴)))
168, 11, 153bitr4g 314 . . . . . . 7 (𝑥C → (((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))))
1716ralbiia 3074 . . . . . 6 (∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))
1817a1i 11 . . . . 5 (𝐴C → (∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴) ↔ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))))
195, 18anbi12d 632 . . . 4 (𝐴C → ((0𝐴 ∧ ∀𝑥C ((0𝑥𝑥𝐴) → 𝑥 = 𝐴)) ↔ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
204, 19bitr2d 280 . . 3 (𝐴C → ((𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0))) ↔ 0 𝐴))
2120pm5.32i 574 . 2 ((𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))) ↔ (𝐴C ∧ 0 𝐴))
221, 21bitr4i 278 1 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑥C (𝑥𝐴 → (𝑥 = 𝐴𝑥 = 0)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3917  wpss 3918   class class class wbr 5110   C cch 30865  0c0h 30871   ccv 30900  HAtomscat 30901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946  ax-hfi 31015  ax-his1 31018  ax-his2 31019  ax-his3 31020  ax-his4 31021
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-icc 13320  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-lm 23123  df-haus 23209  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-hnorm 30904  df-hvsub 30907  df-hlim 30908  df-sh 31143  df-ch 31157  df-ch0 31189  df-cv 32215  df-at 32274
This theorem is referenced by:  atne0  32281  atss  32282  h1da  32285  atom1d  32289
  Copyright terms: Public domain W3C validator