![]() |
Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordsing | Structured version Visualization version GIF version |
Description: Singleton is an increasing sequence for any compatible range. (Contributed by Ender Ting, 21-Nov-2024.) |
Ref | Expression |
---|---|
upwordsing.1 | ⊢ 𝐴 ∈ 𝑆 |
Ref | Expression |
---|---|
upwordsing | ⊢ ⟨“𝐴”⟩ ∈ UpWord 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upwordsing.1 | . . . 4 ⊢ 𝐴 ∈ 𝑆 | |
2 | s1cl 14582 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ ∈ Word 𝑆) | |
3 | elab6g 3650 | . . . 4 ⊢ (⟨“𝐴”⟩ ∈ Word 𝑆 → (⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))))) |
5 | s1cl 14582 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ ∈ Word 𝑆) | |
6 | eleq1a 2820 | . . . . 5 ⊢ (⟨“𝐴”⟩ ∈ Word 𝑆 → (𝑤 = ⟨“𝐴”⟩ → 𝑤 ∈ Word 𝑆)) | |
7 | 1, 5, 6 | mp2b 10 | . . . 4 ⊢ (𝑤 = ⟨“𝐴”⟩ → 𝑤 ∈ Word 𝑆) |
8 | fveq2 6891 | . . . . . . . . 9 ⊢ (𝑤 = ⟨“𝐴”⟩ → (♯‘𝑤) = (♯‘⟨“𝐴”⟩)) | |
9 | 8 | oveq1d 7430 | . . . . . . . 8 ⊢ (𝑤 = ⟨“𝐴”⟩ → ((♯‘𝑤) − 1) = ((♯‘⟨“𝐴”⟩) − 1)) |
10 | s1len 14586 | . . . . . . . . . 10 ⊢ (♯‘⟨“𝐴”⟩) = 1 | |
11 | 10 | oveq1i 7425 | . . . . . . . . 9 ⊢ ((♯‘⟨“𝐴”⟩) − 1) = (1 − 1) |
12 | 1m1e0 12312 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
13 | 11, 12 | eqtri 2753 | . . . . . . . 8 ⊢ ((♯‘⟨“𝐴”⟩) − 1) = 0 |
14 | 9, 13 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝑤 = ⟨“𝐴”⟩ → ((♯‘𝑤) − 1) = 0) |
15 | 14 | oveq2d 7431 | . . . . . 6 ⊢ (𝑤 = ⟨“𝐴”⟩ → (0..^((♯‘𝑤) − 1)) = (0..^0)) |
16 | fzo0 13686 | . . . . . 6 ⊢ (0..^0) = ∅ | |
17 | 15, 16 | eqtrdi 2781 | . . . . 5 ⊢ (𝑤 = ⟨“𝐴”⟩ → (0..^((♯‘𝑤) − 1)) = ∅) |
18 | rzal 4504 | . . . . 5 ⊢ ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝑤 = ⟨“𝐴”⟩ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) |
20 | 7, 19 | jca 510 | . . 3 ⊢ (𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
21 | 4, 20 | mpgbir 1793 | . 2 ⊢ ⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} |
22 | df-upword 46327 | . 2 ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
23 | 21, 22 | eleqtrri 2824 | 1 ⊢ ⟨“𝐴”⟩ ∈ UpWord 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ∈ wcel 2098 {cab 2702 ∀wral 3051 ∅c0 4318 class class class wbr 5143 ‘cfv 6542 (class class class)co 7415 0cc0 11136 1c1 11137 + caddc 11139 < clt 11276 − cmin 11472 ..^cfzo 13657 ♯chash 14319 Word cword 14494 ⟨“cs1 14575 UpWord cupword 46326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-fzo 13658 df-hash 14320 df-word 14495 df-s1 14576 df-upword 46327 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |