![]() |
Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordsing | Structured version Visualization version GIF version |
Description: Singleton is an increasing sequence for any compatible range. (Contributed by Ender Ting, 21-Nov-2024.) |
Ref | Expression |
---|---|
upwordsing.1 | ⊢ 𝐴 ∈ 𝑆 |
Ref | Expression |
---|---|
upwordsing | ⊢ ⟨“𝐴”⟩ ∈ UpWord 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upwordsing.1 | . . . 4 ⊢ 𝐴 ∈ 𝑆 | |
2 | s1cl 14558 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ ∈ Word 𝑆) | |
3 | elab6g 3654 | . . . 4 ⊢ (⟨“𝐴”⟩ ∈ Word 𝑆 → (⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))))) |
5 | s1cl 14558 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ ∈ Word 𝑆) | |
6 | eleq1a 2822 | . . . . 5 ⊢ (⟨“𝐴”⟩ ∈ Word 𝑆 → (𝑤 = ⟨“𝐴”⟩ → 𝑤 ∈ Word 𝑆)) | |
7 | 1, 5, 6 | mp2b 10 | . . . 4 ⊢ (𝑤 = ⟨“𝐴”⟩ → 𝑤 ∈ Word 𝑆) |
8 | fveq2 6885 | . . . . . . . . 9 ⊢ (𝑤 = ⟨“𝐴”⟩ → (♯‘𝑤) = (♯‘⟨“𝐴”⟩)) | |
9 | 8 | oveq1d 7420 | . . . . . . . 8 ⊢ (𝑤 = ⟨“𝐴”⟩ → ((♯‘𝑤) − 1) = ((♯‘⟨“𝐴”⟩) − 1)) |
10 | s1len 14562 | . . . . . . . . . 10 ⊢ (♯‘⟨“𝐴”⟩) = 1 | |
11 | 10 | oveq1i 7415 | . . . . . . . . 9 ⊢ ((♯‘⟨“𝐴”⟩) − 1) = (1 − 1) |
12 | 1m1e0 12288 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
13 | 11, 12 | eqtri 2754 | . . . . . . . 8 ⊢ ((♯‘⟨“𝐴”⟩) − 1) = 0 |
14 | 9, 13 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝑤 = ⟨“𝐴”⟩ → ((♯‘𝑤) − 1) = 0) |
15 | 14 | oveq2d 7421 | . . . . . 6 ⊢ (𝑤 = ⟨“𝐴”⟩ → (0..^((♯‘𝑤) − 1)) = (0..^0)) |
16 | fzo0 13662 | . . . . . 6 ⊢ (0..^0) = ∅ | |
17 | 15, 16 | eqtrdi 2782 | . . . . 5 ⊢ (𝑤 = ⟨“𝐴”⟩ → (0..^((♯‘𝑤) − 1)) = ∅) |
18 | rzal 4503 | . . . . 5 ⊢ ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝑤 = ⟨“𝐴”⟩ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) |
20 | 7, 19 | jca 511 | . . 3 ⊢ (𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
21 | 4, 20 | mpgbir 1793 | . 2 ⊢ ⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} |
22 | df-upword 46170 | . 2 ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
23 | 21, 22 | eleqtrri 2826 | 1 ⊢ ⟨“𝐴”⟩ ∈ UpWord 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∈ wcel 2098 {cab 2703 ∀wral 3055 ∅c0 4317 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 0cc0 11112 1c1 11113 + caddc 11115 < clt 11252 − cmin 11448 ..^cfzo 13633 ♯chash 14295 Word cword 14470 ⟨“cs1 14551 UpWord cupword 46169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-hash 14296 df-word 14471 df-s1 14552 df-upword 46170 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |