Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwordsing Structured version   Visualization version   GIF version

Theorem upwordsing 46771
Description: Singleton is an increasing sequence for any compatible range. (Contributed by Ender Ting, 21-Nov-2024.)
Hypothesis
Ref Expression
upwordsing.1 𝐴𝑆
Assertion
Ref Expression
upwordsing ⟨“𝐴”⟩ ∈ UpWord𝑆

Proof of Theorem upwordsing
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upwordsing.1 . . . 4 𝐴𝑆
2 s1cl 14379 . . . 4 (𝐴𝑆 → ⟨“𝐴”⟩ ∈ Word 𝑆)
3 elab6g 3610 . . . 4 (⟨“𝐴”⟩ ∈ Word 𝑆 → (⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))))
41, 2, 3mp2b 10 . . 3 (⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))))
5 s1cl 14379 . . . . 5 (𝐴𝑆 → ⟨“𝐴”⟩ ∈ Word 𝑆)
6 eleq1a 2833 . . . . 5 (⟨“𝐴”⟩ ∈ Word 𝑆 → (𝑤 = ⟨“𝐴”⟩ → 𝑤 ∈ Word 𝑆))
71, 5, 6mp2b 10 . . . 4 (𝑤 = ⟨“𝐴”⟩ → 𝑤 ∈ Word 𝑆)
8 fveq2 6811 . . . . . . . . 9 (𝑤 = ⟨“𝐴”⟩ → (♯‘𝑤) = (♯‘⟨“𝐴”⟩))
98oveq1d 7330 . . . . . . . 8 (𝑤 = ⟨“𝐴”⟩ → ((♯‘𝑤) − 1) = ((♯‘⟨“𝐴”⟩) − 1))
10 s1len 14383 . . . . . . . . . 10 (♯‘⟨“𝐴”⟩) = 1
1110oveq1i 7325 . . . . . . . . 9 ((♯‘⟨“𝐴”⟩) − 1) = (1 − 1)
12 1m1e0 12118 . . . . . . . . 9 (1 − 1) = 0
1311, 12eqtri 2765 . . . . . . . 8 ((♯‘⟨“𝐴”⟩) − 1) = 0
149, 13eqtrdi 2793 . . . . . . 7 (𝑤 = ⟨“𝐴”⟩ → ((♯‘𝑤) − 1) = 0)
1514oveq2d 7331 . . . . . 6 (𝑤 = ⟨“𝐴”⟩ → (0..^((♯‘𝑤) − 1)) = (0..^0))
16 fzo0 13484 . . . . . 6 (0..^0) = ∅
1715, 16eqtrdi 2793 . . . . 5 (𝑤 = ⟨“𝐴”⟩ → (0..^((♯‘𝑤) − 1)) = ∅)
18 rzal 4451 . . . . 5 ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))
1917, 18syl 17 . . . 4 (𝑤 = ⟨“𝐴”⟩ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))
207, 19jca 512 . . 3 (𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))
214, 20mpgbir 1800 . 2 ⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
22 df-upword 46766 . 2 UpWord𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
2321, 22eleqtrri 2837 1 ⟨“𝐴”⟩ ∈ UpWord𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1538   = wceq 1540  wcel 2105  {cab 2714  wral 3062  c0 4267   class class class wbr 5087  cfv 6465  (class class class)co 7315  0cc0 10944  1c1 10945   + caddc 10947   < clt 11082  cmin 11278  ..^cfzo 13455  chash 14117  Word cword 14289  ⟨“cs1 14372  UpWordcupword 46765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-1o 8344  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785  df-card 9768  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-n0 12307  df-z 12393  df-uz 12656  df-fz 13313  df-fzo 13456  df-hash 14118  df-word 14290  df-s1 14373  df-upword 46766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator