![]() |
Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordsing | Structured version Visualization version GIF version |
Description: Singleton is an increasing sequence for any compatible range. (Contributed by Ender Ting, 21-Nov-2024.) |
Ref | Expression |
---|---|
upwordsing.1 | ⊢ 𝐴 ∈ 𝑆 |
Ref | Expression |
---|---|
upwordsing | ⊢ ⟨“𝐴”⟩ ∈ UpWord 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upwordsing.1 | . . . 4 ⊢ 𝐴 ∈ 𝑆 | |
2 | s1cl 14497 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ ∈ Word 𝑆) | |
3 | elab6g 3626 | . . . 4 ⊢ (⟨“𝐴”⟩ ∈ Word 𝑆 → (⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))))) |
5 | s1cl 14497 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ ∈ Word 𝑆) | |
6 | eleq1a 2833 | . . . . 5 ⊢ (⟨“𝐴”⟩ ∈ Word 𝑆 → (𝑤 = ⟨“𝐴”⟩ → 𝑤 ∈ Word 𝑆)) | |
7 | 1, 5, 6 | mp2b 10 | . . . 4 ⊢ (𝑤 = ⟨“𝐴”⟩ → 𝑤 ∈ Word 𝑆) |
8 | fveq2 6847 | . . . . . . . . 9 ⊢ (𝑤 = ⟨“𝐴”⟩ → (♯‘𝑤) = (♯‘⟨“𝐴”⟩)) | |
9 | 8 | oveq1d 7377 | . . . . . . . 8 ⊢ (𝑤 = ⟨“𝐴”⟩ → ((♯‘𝑤) − 1) = ((♯‘⟨“𝐴”⟩) − 1)) |
10 | s1len 14501 | . . . . . . . . . 10 ⊢ (♯‘⟨“𝐴”⟩) = 1 | |
11 | 10 | oveq1i 7372 | . . . . . . . . 9 ⊢ ((♯‘⟨“𝐴”⟩) − 1) = (1 − 1) |
12 | 1m1e0 12232 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
13 | 11, 12 | eqtri 2765 | . . . . . . . 8 ⊢ ((♯‘⟨“𝐴”⟩) − 1) = 0 |
14 | 9, 13 | eqtrdi 2793 | . . . . . . 7 ⊢ (𝑤 = ⟨“𝐴”⟩ → ((♯‘𝑤) − 1) = 0) |
15 | 14 | oveq2d 7378 | . . . . . 6 ⊢ (𝑤 = ⟨“𝐴”⟩ → (0..^((♯‘𝑤) − 1)) = (0..^0)) |
16 | fzo0 13603 | . . . . . 6 ⊢ (0..^0) = ∅ | |
17 | 15, 16 | eqtrdi 2793 | . . . . 5 ⊢ (𝑤 = ⟨“𝐴”⟩ → (0..^((♯‘𝑤) − 1)) = ∅) |
18 | rzal 4471 | . . . . 5 ⊢ ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) | |
19 | 17, 18 | syl 17 | . . . 4 ⊢ (𝑤 = ⟨“𝐴”⟩ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) |
20 | 7, 19 | jca 513 | . . 3 ⊢ (𝑤 = ⟨“𝐴”⟩ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
21 | 4, 20 | mpgbir 1802 | . 2 ⊢ ⟨“𝐴”⟩ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} |
22 | df-upword 45192 | . 2 ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
23 | 21, 22 | eleqtrri 2837 | 1 ⊢ ⟨“𝐴”⟩ ∈ UpWord 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 {cab 2714 ∀wral 3065 ∅c0 4287 class class class wbr 5110 ‘cfv 6501 (class class class)co 7362 0cc0 11058 1c1 11059 + caddc 11061 < clt 11196 − cmin 11392 ..^cfzo 13574 ♯chash 14237 Word cword 14409 ⟨“cs1 14490 UpWord cupword 45191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-card 9882 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-n0 12421 df-z 12507 df-uz 12771 df-fz 13432 df-fzo 13575 df-hash 14238 df-word 14410 df-s1 14491 df-upword 45192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |