MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elabgOLD Structured version   Visualization version   GIF version

Theorem elabgOLD 3659
Description: Obsolete version of elabg 3658 as of 5-Oct-2024. (Contributed by NM, 14-Apr-1995.) Remove dependency on ax-13 2363. (Revised by SN, 23-Nov-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
elabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elabgOLD (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elabgOLD
StepHypRef Expression
1 nfab1 2897 . . . 4 𝑥{𝑥𝜑}
21nfel2 2913 . . 3 𝑥 𝐴 ∈ {𝑥𝜑}
3 nfv 1909 . . 3 𝑥𝜓
42, 3nfbi 1898 . 2 𝑥(𝐴 ∈ {𝑥𝜑} ↔ 𝜓)
5 eleq1 2813 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
6 elabg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6bibi12d 345 . 2 (𝑥 = 𝐴 → ((𝑥 ∈ {𝑥𝜑} ↔ 𝜑) ↔ (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
8 abid 2705 . 2 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
94, 7, 8vtoclg1f 3551 1 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  {cab 2701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator