![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elabgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of elabg 3677 as of 5-Oct-2024. (Contributed by NM, 14-Apr-1995.) Remove dependency on ax-13 2375. (Revised by SN, 23-Nov-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elabgOLD | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2905 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | 1 | nfel2 2922 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜑} |
3 | nfv 1912 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfbi 1901 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
5 | eleq1 2827 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
6 | elabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
8 | abid 2716 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | 4, 7, 8 | vtoclg1f 3570 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {cab 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |