Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elabgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of elabg 3600 as of 5-Oct-2024. (Contributed by NM, 14-Apr-1995.) Remove dependency on ax-13 2372. (Revised by SN, 23-Nov-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elabgOLD | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2908 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | 1 | nfel2 2924 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜑} |
3 | nfv 1918 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfbi 1907 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
5 | eleq1 2826 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
6 | elabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
8 | abid 2719 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | 4, 7, 8 | vtoclg1f 3494 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |