![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elabgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of elabg 3658 as of 5-Oct-2024. (Contributed by NM, 14-Apr-1995.) Remove dependency on ax-13 2363. (Revised by SN, 23-Nov-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elabgOLD | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab1 2897 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
2 | 1 | nfel2 2913 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜑} |
3 | nfv 1909 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 2, 3 | nfbi 1898 | . 2 ⊢ Ⅎ𝑥(𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
5 | eleq1 2813 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
6 | elabg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) ↔ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
8 | abid 2705 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | 4, 7, 8 | vtoclg1f 3551 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 {cab 2701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |