Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omo | Structured version Visualization version GIF version |
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 45757 assuming ax-un 7491 (see f1omoALT 45759). (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
f1omo.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
Ref | Expression |
---|---|
f1omo | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8156 | . . . 4 ⊢ 1o ∈ V | |
2 | eqid 2739 | . . . 4 ⊢ ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋) | |
3 | 1, 2 | fvconst0ci 45756 | . . 3 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) |
4 | mo0 45738 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) | |
5 | el1o 8167 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
6 | el1o 8167 | . . . . . . . 8 ⊢ (𝑥 ∈ 1o ↔ 𝑥 = ∅) | |
7 | eqtr3 2761 | . . . . . . . 8 ⊢ ((𝑦 = ∅ ∧ 𝑥 = ∅) → 𝑦 = 𝑥) | |
8 | 5, 6, 7 | syl2anb 601 | . . . . . . 7 ⊢ ((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥) |
9 | 8 | gen2 1803 | . . . . . 6 ⊢ ∀𝑦∀𝑥((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥) |
10 | eleq1w 2816 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 1o ↔ 𝑥 ∈ 1o)) | |
11 | 10 | mo4 2567 | . . . . . 6 ⊢ (∃*𝑦 𝑦 ∈ 1o ↔ ∀𝑦∀𝑥((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥)) |
12 | 9, 11 | mpbir 234 | . . . . 5 ⊢ ∃*𝑦 𝑦 ∈ 1o |
13 | eleq2w2 2735 | . . . . . 6 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → (𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ 𝑦 ∈ 1o)) | |
14 | 13 | mobidv 2550 | . . . . 5 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → (∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ ∃*𝑦 𝑦 ∈ 1o)) |
15 | 12, 14 | mpbiri 261 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
16 | 4, 15 | jaoi 856 | . . 3 ⊢ ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
17 | 3, 16 | ax-mp 5 | . 2 ⊢ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) |
18 | f1omo.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
19 | 18 | fveq1d 6688 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
20 | 19 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
21 | 20 | mobidv 2550 | . 2 ⊢ (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
22 | 17, 21 | mpbiri 261 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 846 ∀wal 1540 = wceq 1542 ∈ wcel 2114 ∃*wmo 2539 ∅c0 4221 {csn 4526 × cxp 5533 ‘cfv 6349 1oc1o 8136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-fv 6357 df-1o 8143 |
This theorem is referenced by: indthinc 45844 prsthinc 45846 |
Copyright terms: Public domain | W3C validator |