Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omo | Structured version Visualization version GIF version |
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 46431 assuming ax-un 7620 (see f1omoALT 46433). (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
f1omo.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
Ref | Expression |
---|---|
f1omo | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8338 | . . . 4 ⊢ 1o ∈ V | |
2 | eqid 2736 | . . . 4 ⊢ ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋) | |
3 | 1, 2 | fvconst0ci 46430 | . . 3 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) |
4 | mo0 46403 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) | |
5 | el1o 8356 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
6 | el1o 8356 | . . . . . . . 8 ⊢ (𝑥 ∈ 1o ↔ 𝑥 = ∅) | |
7 | eqtr3 2762 | . . . . . . . 8 ⊢ ((𝑦 = ∅ ∧ 𝑥 = ∅) → 𝑦 = 𝑥) | |
8 | 5, 6, 7 | syl2anb 599 | . . . . . . 7 ⊢ ((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥) |
9 | 8 | gen2 1796 | . . . . . 6 ⊢ ∀𝑦∀𝑥((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥) |
10 | eleq1w 2819 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 1o ↔ 𝑥 ∈ 1o)) | |
11 | 10 | mo4 2564 | . . . . . 6 ⊢ (∃*𝑦 𝑦 ∈ 1o ↔ ∀𝑦∀𝑥((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥)) |
12 | 9, 11 | mpbir 230 | . . . . 5 ⊢ ∃*𝑦 𝑦 ∈ 1o |
13 | eleq2w2 2732 | . . . . . 6 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → (𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ 𝑦 ∈ 1o)) | |
14 | 13 | mobidv 2547 | . . . . 5 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → (∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ ∃*𝑦 𝑦 ∈ 1o)) |
15 | 12, 14 | mpbiri 258 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
16 | 4, 15 | jaoi 855 | . . 3 ⊢ ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
17 | 3, 16 | ax-mp 5 | . 2 ⊢ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) |
18 | f1omo.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
19 | 18 | fveq1d 6806 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
20 | 19 | eleq2d 2822 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
21 | 20 | mobidv 2547 | . 2 ⊢ (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
22 | 17, 21 | mpbiri 258 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 845 ∀wal 1537 = wceq 1539 ∈ wcel 2104 ∃*wmo 2536 ∅c0 4262 {csn 4565 × cxp 5598 ‘cfv 6458 1oc1o 8321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-1o 8328 |
This theorem is referenced by: indthinc 46577 prsthinc 46579 |
Copyright terms: Public domain | W3C validator |