Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omo Structured version   Visualization version   GIF version

Theorem f1omo 47692
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 47691 assuming ax-un 7729 (see f1omoALT 47693). (Contributed by Zhi Wang, 19-Sep-2024.)
Hypothesis
Ref Expression
f1omo.1 (𝜑𝐹 = (𝐴 × {1o}))
Assertion
Ref Expression
f1omo (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑋   𝜑,𝑦

Proof of Theorem f1omo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1oex 8482 . . . 4 1o ∈ V
2 eqid 2731 . . . 4 ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋)
31, 2fvconst0ci 47690 . . 3 (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o)
4 mo0 47663 . . . 4 (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
5 el1o 8501 . . . . . . . 8 (𝑦 ∈ 1o𝑦 = ∅)
6 el1o 8501 . . . . . . . 8 (𝑥 ∈ 1o𝑥 = ∅)
7 eqtr3 2757 . . . . . . . 8 ((𝑦 = ∅ ∧ 𝑥 = ∅) → 𝑦 = 𝑥)
85, 6, 7syl2anb 597 . . . . . . 7 ((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥)
98gen2 1797 . . . . . 6 𝑦𝑥((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥)
10 eleq1w 2815 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ∈ 1o𝑥 ∈ 1o))
1110mo4 2559 . . . . . 6 (∃*𝑦 𝑦 ∈ 1o ↔ ∀𝑦𝑥((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥))
129, 11mpbir 230 . . . . 5 ∃*𝑦 𝑦 ∈ 1o
13 eleq2w2 2727 . . . . . 6 (((𝐴 × {1o})‘𝑋) = 1o → (𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ 𝑦 ∈ 1o))
1413mobidv 2542 . . . . 5 (((𝐴 × {1o})‘𝑋) = 1o → (∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ ∃*𝑦 𝑦 ∈ 1o))
1512, 14mpbiri 258 . . . 4 (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
164, 15jaoi 854 . . 3 ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
173, 16ax-mp 5 . 2 ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)
18 f1omo.1 . . . . 5 (𝜑𝐹 = (𝐴 × {1o}))
1918fveq1d 6893 . . . 4 (𝜑 → (𝐹𝑋) = ((𝐴 × {1o})‘𝑋))
2019eleq2d 2818 . . 3 (𝜑 → (𝑦 ∈ (𝐹𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
2120mobidv 2542 . 2 (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
2217, 21mpbiri 258 1 (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  wal 1538   = wceq 1540  wcel 2105  ∃*wmo 2531  c0 4322  {csn 4628   × cxp 5674  cfv 6543  1oc1o 8465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-1o 8472
This theorem is referenced by:  indthinc  47837  prsthinc  47839
  Copyright terms: Public domain W3C validator