Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omo Structured version   Visualization version   GIF version

Theorem f1omo 48924
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 48923 assuming ax-un 7663 (see f1omoALT 48926). (Contributed by Zhi Wang, 19-Sep-2024.) (Proof shortened by SN, 24-Nov-2025.)
Hypothesis
Ref Expression
f1omo.1 (𝜑𝐹 = (𝐴 × {1o}))
Assertion
Ref Expression
f1omo (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑋   𝜑,𝑦

Proof of Theorem f1omo
StepHypRef Expression
1 1oex 8390 . . . 4 1o ∈ V
2 eqid 2731 . . . 4 ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋)
31, 2fvconst0ci 48922 . . 3 (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o)
4 mo0 48845 . . . 4 (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
5 df1o2 8387 . . . . . 6 1o = {∅}
65eqeq2i 2744 . . . . 5 (((𝐴 × {1o})‘𝑋) = 1o ↔ ((𝐴 × {1o})‘𝑋) = {∅})
7 mosn 48844 . . . . 5 (((𝐴 × {1o})‘𝑋) = {∅} → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
86, 7sylbi 217 . . . 4 (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
94, 8jaoi 857 . . 3 ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
103, 9ax-mp 5 . 2 ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)
11 f1omo.1 . . . . 5 (𝜑𝐹 = (𝐴 × {1o}))
1211fveq1d 6819 . . . 4 (𝜑 → (𝐹𝑋) = ((𝐴 × {1o})‘𝑋))
1312eleq2d 2817 . . 3 (𝜑 → (𝑦 ∈ (𝐹𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
1413mobidv 2544 . 2 (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
1510, 14mpbiri 258 1 (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  ∃*wmo 2533  c0 4278  {csn 4571   × cxp 5609  cfv 6476  1oc1o 8373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-1o 8380
This theorem is referenced by:  indthinc  49494  prsthinc  49496
  Copyright terms: Public domain W3C validator