Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omo Structured version   Visualization version   GIF version

Theorem f1omo 48878
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 48877 assuming ax-un 7711 (see f1omoALT 48880). (Contributed by Zhi Wang, 19-Sep-2024.) (Proof shortened by SN, 24-Nov-2025.)
Hypothesis
Ref Expression
f1omo.1 (𝜑𝐹 = (𝐴 × {1o}))
Assertion
Ref Expression
f1omo (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑋   𝜑,𝑦

Proof of Theorem f1omo
StepHypRef Expression
1 1oex 8444 . . . 4 1o ∈ V
2 eqid 2729 . . . 4 ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋)
31, 2fvconst0ci 48876 . . 3 (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o)
4 mo0 48799 . . . 4 (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
5 df1o2 8441 . . . . . 6 1o = {∅}
65eqeq2i 2742 . . . . 5 (((𝐴 × {1o})‘𝑋) = 1o ↔ ((𝐴 × {1o})‘𝑋) = {∅})
7 mosn 48798 . . . . 5 (((𝐴 × {1o})‘𝑋) = {∅} → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
86, 7sylbi 217 . . . 4 (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
94, 8jaoi 857 . . 3 ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
103, 9ax-mp 5 . 2 ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)
11 f1omo.1 . . . . 5 (𝜑𝐹 = (𝐴 × {1o}))
1211fveq1d 6860 . . . 4 (𝜑 → (𝐹𝑋) = ((𝐴 × {1o})‘𝑋))
1312eleq2d 2814 . . 3 (𝜑 → (𝑦 ∈ (𝐹𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
1413mobidv 2542 . 2 (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
1510, 14mpbiri 258 1 (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  ∃*wmo 2531  c0 4296  {csn 4589   × cxp 5636  cfv 6511  1oc1o 8427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-1o 8434
This theorem is referenced by:  indthinc  49448  prsthinc  49450
  Copyright terms: Public domain W3C validator