| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omo | Structured version Visualization version GIF version | ||
| Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 48880 assuming ax-un 7675 (see f1omoALT 48883). (Contributed by Zhi Wang, 19-Sep-2024.) (Proof shortened by SN, 24-Nov-2025.) |
| Ref | Expression |
|---|---|
| f1omo.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
| Ref | Expression |
|---|---|
| f1omo | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8405 | . . . 4 ⊢ 1o ∈ V | |
| 2 | eqid 2729 | . . . 4 ⊢ ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋) | |
| 3 | 1, 2 | fvconst0ci 48879 | . . 3 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) |
| 4 | mo0 48802 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) | |
| 5 | df1o2 8402 | . . . . . 6 ⊢ 1o = {∅} | |
| 6 | 5 | eqeq2i 2742 | . . . . 5 ⊢ (((𝐴 × {1o})‘𝑋) = 1o ↔ ((𝐴 × {1o})‘𝑋) = {∅}) |
| 7 | mosn 48801 | . . . . 5 ⊢ (((𝐴 × {1o})‘𝑋) = {∅} → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) | |
| 8 | 6, 7 | sylbi 217 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
| 9 | 4, 8 | jaoi 857 | . . 3 ⊢ ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
| 10 | 3, 9 | ax-mp 5 | . 2 ⊢ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) |
| 11 | f1omo.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
| 12 | 11 | fveq1d 6828 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
| 13 | 12 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
| 14 | 13 | mobidv 2542 | . 2 ⊢ (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
| 15 | 10, 14 | mpbiri 258 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 ∅c0 4286 {csn 4579 × cxp 5621 ‘cfv 6486 1oc1o 8388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-1o 8395 |
| This theorem is referenced by: indthinc 49451 prsthinc 49453 |
| Copyright terms: Public domain | W3C validator |