Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omo Structured version   Visualization version   GIF version

Theorem f1omo 48751
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 48750 assuming ax-un 7737 (see f1omoALT 48752). (Contributed by Zhi Wang, 19-Sep-2024.)
Hypothesis
Ref Expression
f1omo.1 (𝜑𝐹 = (𝐴 × {1o}))
Assertion
Ref Expression
f1omo (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑋   𝜑,𝑦

Proof of Theorem f1omo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1oex 8498 . . . 4 1o ∈ V
2 eqid 2734 . . . 4 ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋)
31, 2fvconst0ci 48749 . . 3 (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o)
4 mo0 48691 . . . 4 (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
5 el1o 8515 . . . . . . . 8 (𝑦 ∈ 1o𝑦 = ∅)
6 el1o 8515 . . . . . . . 8 (𝑥 ∈ 1o𝑥 = ∅)
7 eqtr3 2756 . . . . . . . 8 ((𝑦 = ∅ ∧ 𝑥 = ∅) → 𝑦 = 𝑥)
85, 6, 7syl2anb 598 . . . . . . 7 ((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥)
98gen2 1795 . . . . . 6 𝑦𝑥((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥)
10 eleq1w 2816 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ∈ 1o𝑥 ∈ 1o))
1110mo4 2564 . . . . . 6 (∃*𝑦 𝑦 ∈ 1o ↔ ∀𝑦𝑥((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥))
129, 11mpbir 231 . . . . 5 ∃*𝑦 𝑦 ∈ 1o
13 eleq2w2 2730 . . . . . 6 (((𝐴 × {1o})‘𝑋) = 1o → (𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ 𝑦 ∈ 1o))
1413mobidv 2547 . . . . 5 (((𝐴 × {1o})‘𝑋) = 1o → (∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ ∃*𝑦 𝑦 ∈ 1o))
1512, 14mpbiri 258 . . . 4 (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
164, 15jaoi 857 . . 3 ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
173, 16ax-mp 5 . 2 ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)
18 f1omo.1 . . . . 5 (𝜑𝐹 = (𝐴 × {1o}))
1918fveq1d 6888 . . . 4 (𝜑 → (𝐹𝑋) = ((𝐴 × {1o})‘𝑋))
2019eleq2d 2819 . . 3 (𝜑 → (𝑦 ∈ (𝐹𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
2120mobidv 2547 . 2 (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
2217, 21mpbiri 258 1 (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  wal 1537   = wceq 1539  wcel 2107  ∃*wmo 2536  c0 4313  {csn 4606   × cxp 5663  cfv 6541  1oc1o 8481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-1o 8488
This theorem is referenced by:  indthinc  49087  prsthinc  49089
  Copyright terms: Public domain W3C validator