Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omo Structured version   Visualization version   GIF version

Theorem f1omo 48574
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 48573 assuming ax-un 7770 (see f1omoALT 48575). (Contributed by Zhi Wang, 19-Sep-2024.)
Hypothesis
Ref Expression
f1omo.1 (𝜑𝐹 = (𝐴 × {1o}))
Assertion
Ref Expression
f1omo (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑋   𝜑,𝑦

Proof of Theorem f1omo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1oex 8532 . . . 4 1o ∈ V
2 eqid 2740 . . . 4 ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋)
31, 2fvconst0ci 48572 . . 3 (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o)
4 mo0 48545 . . . 4 (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
5 el1o 8551 . . . . . . . 8 (𝑦 ∈ 1o𝑦 = ∅)
6 el1o 8551 . . . . . . . 8 (𝑥 ∈ 1o𝑥 = ∅)
7 eqtr3 2766 . . . . . . . 8 ((𝑦 = ∅ ∧ 𝑥 = ∅) → 𝑦 = 𝑥)
85, 6, 7syl2anb 597 . . . . . . 7 ((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥)
98gen2 1794 . . . . . 6 𝑦𝑥((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥)
10 eleq1w 2827 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ∈ 1o𝑥 ∈ 1o))
1110mo4 2569 . . . . . 6 (∃*𝑦 𝑦 ∈ 1o ↔ ∀𝑦𝑥((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥))
129, 11mpbir 231 . . . . 5 ∃*𝑦 𝑦 ∈ 1o
13 eleq2w2 2736 . . . . . 6 (((𝐴 × {1o})‘𝑋) = 1o → (𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ 𝑦 ∈ 1o))
1413mobidv 2552 . . . . 5 (((𝐴 × {1o})‘𝑋) = 1o → (∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ ∃*𝑦 𝑦 ∈ 1o))
1512, 14mpbiri 258 . . . 4 (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
164, 15jaoi 856 . . 3 ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
173, 16ax-mp 5 . 2 ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)
18 f1omo.1 . . . . 5 (𝜑𝐹 = (𝐴 × {1o}))
1918fveq1d 6922 . . . 4 (𝜑 → (𝐹𝑋) = ((𝐴 × {1o})‘𝑋))
2019eleq2d 2830 . . 3 (𝜑 → (𝑦 ∈ (𝐹𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
2120mobidv 2552 . 2 (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
2217, 21mpbiri 258 1 (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  wal 1535   = wceq 1537  wcel 2108  ∃*wmo 2541  c0 4352  {csn 4648   × cxp 5698  cfv 6573  1oc1o 8515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1o 8522
This theorem is referenced by:  indthinc  48719  prsthinc  48721
  Copyright terms: Public domain W3C validator