![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omo | Structured version Visualization version GIF version |
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 48573 assuming ax-un 7770 (see f1omoALT 48575). (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
f1omo.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
Ref | Expression |
---|---|
f1omo | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8532 | . . . 4 ⊢ 1o ∈ V | |
2 | eqid 2740 | . . . 4 ⊢ ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋) | |
3 | 1, 2 | fvconst0ci 48572 | . . 3 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) |
4 | mo0 48545 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) | |
5 | el1o 8551 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
6 | el1o 8551 | . . . . . . . 8 ⊢ (𝑥 ∈ 1o ↔ 𝑥 = ∅) | |
7 | eqtr3 2766 | . . . . . . . 8 ⊢ ((𝑦 = ∅ ∧ 𝑥 = ∅) → 𝑦 = 𝑥) | |
8 | 5, 6, 7 | syl2anb 597 | . . . . . . 7 ⊢ ((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥) |
9 | 8 | gen2 1794 | . . . . . 6 ⊢ ∀𝑦∀𝑥((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥) |
10 | eleq1w 2827 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 1o ↔ 𝑥 ∈ 1o)) | |
11 | 10 | mo4 2569 | . . . . . 6 ⊢ (∃*𝑦 𝑦 ∈ 1o ↔ ∀𝑦∀𝑥((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥)) |
12 | 9, 11 | mpbir 231 | . . . . 5 ⊢ ∃*𝑦 𝑦 ∈ 1o |
13 | eleq2w2 2736 | . . . . . 6 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → (𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ 𝑦 ∈ 1o)) | |
14 | 13 | mobidv 2552 | . . . . 5 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → (∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ ∃*𝑦 𝑦 ∈ 1o)) |
15 | 12, 14 | mpbiri 258 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
16 | 4, 15 | jaoi 856 | . . 3 ⊢ ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
17 | 3, 16 | ax-mp 5 | . 2 ⊢ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) |
18 | f1omo.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
19 | 18 | fveq1d 6922 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
20 | 19 | eleq2d 2830 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
21 | 20 | mobidv 2552 | . 2 ⊢ (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
22 | 17, 21 | mpbiri 258 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 ∅c0 4352 {csn 4648 × cxp 5698 ‘cfv 6573 1oc1o 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-1o 8522 |
This theorem is referenced by: indthinc 48719 prsthinc 48721 |
Copyright terms: Public domain | W3C validator |