![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omo | Structured version Visualization version GIF version |
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 47046 assuming ax-un 7677 (see f1omoALT 47048). (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
f1omo.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
Ref | Expression |
---|---|
f1omo | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8427 | . . . 4 ⊢ 1o ∈ V | |
2 | eqid 2731 | . . . 4 ⊢ ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋) | |
3 | 1, 2 | fvconst0ci 47045 | . . 3 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) |
4 | mo0 47018 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) | |
5 | el1o 8446 | . . . . . . . 8 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
6 | el1o 8446 | . . . . . . . 8 ⊢ (𝑥 ∈ 1o ↔ 𝑥 = ∅) | |
7 | eqtr3 2757 | . . . . . . . 8 ⊢ ((𝑦 = ∅ ∧ 𝑥 = ∅) → 𝑦 = 𝑥) | |
8 | 5, 6, 7 | syl2anb 598 | . . . . . . 7 ⊢ ((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥) |
9 | 8 | gen2 1798 | . . . . . 6 ⊢ ∀𝑦∀𝑥((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥) |
10 | eleq1w 2815 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 1o ↔ 𝑥 ∈ 1o)) | |
11 | 10 | mo4 2559 | . . . . . 6 ⊢ (∃*𝑦 𝑦 ∈ 1o ↔ ∀𝑦∀𝑥((𝑦 ∈ 1o ∧ 𝑥 ∈ 1o) → 𝑦 = 𝑥)) |
12 | 9, 11 | mpbir 230 | . . . . 5 ⊢ ∃*𝑦 𝑦 ∈ 1o |
13 | eleq2w2 2727 | . . . . . 6 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → (𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ 𝑦 ∈ 1o)) | |
14 | 13 | mobidv 2542 | . . . . 5 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → (∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ ∃*𝑦 𝑦 ∈ 1o)) |
15 | 12, 14 | mpbiri 257 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
16 | 4, 15 | jaoi 855 | . . 3 ⊢ ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
17 | 3, 16 | ax-mp 5 | . 2 ⊢ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) |
18 | f1omo.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
19 | 18 | fveq1d 6849 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
20 | 19 | eleq2d 2818 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
21 | 20 | mobidv 2542 | . 2 ⊢ (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
22 | 17, 21 | mpbiri 257 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ∃*wmo 2531 ∅c0 4287 {csn 4591 × cxp 5636 ‘cfv 6501 1oc1o 8410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3448 df-sbc 3743 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-fv 6509 df-1o 8417 |
This theorem is referenced by: indthinc 47192 prsthinc 47194 |
Copyright terms: Public domain | W3C validator |