Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omo Structured version   Visualization version   GIF version

Theorem f1omo 45758
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 45757 assuming ax-un 7491 (see f1omoALT 45759). (Contributed by Zhi Wang, 19-Sep-2024.)
Hypothesis
Ref Expression
f1omo.1 (𝜑𝐹 = (𝐴 × {1o}))
Assertion
Ref Expression
f1omo (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝑋   𝜑,𝑦

Proof of Theorem f1omo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1oex 8156 . . . 4 1o ∈ V
2 eqid 2739 . . . 4 ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋)
31, 2fvconst0ci 45756 . . 3 (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o)
4 mo0 45738 . . . 4 (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
5 el1o 8167 . . . . . . . 8 (𝑦 ∈ 1o𝑦 = ∅)
6 el1o 8167 . . . . . . . 8 (𝑥 ∈ 1o𝑥 = ∅)
7 eqtr3 2761 . . . . . . . 8 ((𝑦 = ∅ ∧ 𝑥 = ∅) → 𝑦 = 𝑥)
85, 6, 7syl2anb 601 . . . . . . 7 ((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥)
98gen2 1803 . . . . . 6 𝑦𝑥((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥)
10 eleq1w 2816 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 ∈ 1o𝑥 ∈ 1o))
1110mo4 2567 . . . . . 6 (∃*𝑦 𝑦 ∈ 1o ↔ ∀𝑦𝑥((𝑦 ∈ 1o𝑥 ∈ 1o) → 𝑦 = 𝑥))
129, 11mpbir 234 . . . . 5 ∃*𝑦 𝑦 ∈ 1o
13 eleq2w2 2735 . . . . . 6 (((𝐴 × {1o})‘𝑋) = 1o → (𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ 𝑦 ∈ 1o))
1413mobidv 2550 . . . . 5 (((𝐴 × {1o})‘𝑋) = 1o → (∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) ↔ ∃*𝑦 𝑦 ∈ 1o))
1512, 14mpbiri 261 . . . 4 (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
164, 15jaoi 856 . . 3 ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))
173, 16ax-mp 5 . 2 ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)
18 f1omo.1 . . . . 5 (𝜑𝐹 = (𝐴 × {1o}))
1918fveq1d 6688 . . . 4 (𝜑 → (𝐹𝑋) = ((𝐴 × {1o})‘𝑋))
2019eleq2d 2819 . . 3 (𝜑 → (𝑦 ∈ (𝐹𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
2120mobidv 2550 . 2 (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)))
2217, 21mpbiri 261 1 (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 846  wal 1540   = wceq 1542  wcel 2114  ∃*wmo 2539  c0 4221  {csn 4526   × cxp 5533  cfv 6349  1oc1o 8136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-v 3402  df-sbc 3686  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-1o 8143
This theorem is referenced by:  indthinc  45844  prsthinc  45846
  Copyright terms: Public domain W3C validator