| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omo | Structured version Visualization version GIF version | ||
| Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi 49053 assuming ax-un 7677 (see f1omoALT 49056). (Contributed by Zhi Wang, 19-Sep-2024.) (Proof shortened by SN, 24-Nov-2025.) |
| Ref | Expression |
|---|---|
| f1omo.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
| Ref | Expression |
|---|---|
| f1omo | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8404 | . . . 4 ⊢ 1o ∈ V | |
| 2 | eqid 2733 | . . . 4 ⊢ ((𝐴 × {1o})‘𝑋) = ((𝐴 × {1o})‘𝑋) | |
| 3 | 1, 2 | fvconst0ci 49052 | . . 3 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) |
| 4 | mo0 48975 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = ∅ → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) | |
| 5 | df1o2 8401 | . . . . . 6 ⊢ 1o = {∅} | |
| 6 | 5 | eqeq2i 2746 | . . . . 5 ⊢ (((𝐴 × {1o})‘𝑋) = 1o ↔ ((𝐴 × {1o})‘𝑋) = {∅}) |
| 7 | mosn 48974 | . . . . 5 ⊢ (((𝐴 × {1o})‘𝑋) = {∅} → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) | |
| 8 | 6, 7 | sylbi 217 | . . . 4 ⊢ (((𝐴 × {1o})‘𝑋) = 1o → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
| 9 | 4, 8 | jaoi 857 | . . 3 ⊢ ((((𝐴 × {1o})‘𝑋) = ∅ ∨ ((𝐴 × {1o})‘𝑋) = 1o) → ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋)) |
| 10 | 3, 9 | ax-mp 5 | . 2 ⊢ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋) |
| 11 | f1omo.1 | . . . . 5 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
| 12 | 11 | fveq1d 6833 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
| 13 | 12 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐹‘𝑋) ↔ 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
| 14 | 13 | mobidv 2546 | . 2 ⊢ (𝜑 → (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ ∃*𝑦 𝑦 ∈ ((𝐴 × {1o})‘𝑋))) |
| 15 | 10, 14 | mpbiri 258 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∃*wmo 2535 ∅c0 4282 {csn 4577 × cxp 5619 ‘cfv 6489 1oc1o 8387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-1o 8394 |
| This theorem is referenced by: indthinc 49623 prsthinc 49625 |
| Copyright terms: Public domain | W3C validator |