Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliind Structured version   Visualization version   GIF version

Theorem eliind 42619
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
eliind.a (𝜑𝐴 𝑥𝐵 𝐶)
eliind.k (𝜑𝐾𝐵)
eliind.d (𝑥 = 𝐾 → (𝐴𝐶𝐴𝐷))
Assertion
Ref Expression
eliind (𝜑𝐴𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐾
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem eliind
StepHypRef Expression
1 eliind.d . 2 (𝑥 = 𝐾 → (𝐴𝐶𝐴𝐷))
2 eliind.a . . 3 (𝜑𝐴 𝑥𝐵 𝐶)
3 eliin 4929 . . . 4 (𝐴 𝑥𝐵 𝐶 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
42, 3syl 17 . . 3 (𝜑 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
52, 4mpbid 231 . 2 (𝜑 → ∀𝑥𝐵 𝐴𝐶)
6 eliind.k . 2 (𝜑𝐾𝐵)
71, 5, 6rspcdva 3562 1 (𝜑𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wral 3064   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-iin 4927
This theorem is referenced by:  iooiinioc  43094  hspdifhsp  44154  smflimlem3  44308  smfsuplem1  44344  smflimsuplem4  44356
  Copyright terms: Public domain W3C validator