Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliind Structured version   Visualization version   GIF version

Theorem eliind 45072
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
eliind.a (𝜑𝐴 𝑥𝐵 𝐶)
eliind.k (𝜑𝐾𝐵)
eliind.d (𝑥 = 𝐾 → (𝐴𝐶𝐴𝐷))
Assertion
Ref Expression
eliind (𝜑𝐴𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐾
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem eliind
StepHypRef Expression
1 eliind.d . 2 (𝑥 = 𝐾 → (𝐴𝐶𝐴𝐷))
2 eliind.a . . 3 (𝜑𝐴 𝑥𝐵 𝐶)
3 eliin 4963 . . . 4 (𝐴 𝑥𝐵 𝐶 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
42, 3syl 17 . . 3 (𝜑 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
52, 4mpbid 232 . 2 (𝜑 → ∀𝑥𝐵 𝐴𝐶)
6 eliind.k . 2 (𝜑𝐾𝐵)
71, 5, 6rspcdva 3592 1 (𝜑𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045   ciin 4959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-iin 4961
This theorem is referenced by:  iooiinioc  45561  hspdifhsp  46621  smflimlem3  46778  smfsuplem1  46816  smflimsuplem4  46828
  Copyright terms: Public domain W3C validator