| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliind | Structured version Visualization version GIF version | ||
| Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| eliind.a | ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) |
| eliind.k | ⊢ (𝜑 → 𝐾 ∈ 𝐵) |
| eliind.d | ⊢ (𝑥 = 𝐾 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) |
| Ref | Expression |
|---|---|
| eliind | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliind.d | . 2 ⊢ (𝑥 = 𝐾 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) | |
| 2 | eliind.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) | |
| 3 | eliin 4946 | . . . 4 ⊢ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 5 | 2, 4 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| 6 | eliind.k | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐵) | |
| 7 | 1, 5, 6 | rspcdva 3578 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ ciin 4942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-iin 4944 |
| This theorem is referenced by: iooiinioc 45595 hspdifhsp 46653 smflimlem3 46810 smfsuplem1 46848 smflimsuplem4 46860 |
| Copyright terms: Public domain | W3C validator |