![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliind | Structured version Visualization version GIF version |
Description: Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
eliind.a | ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) |
eliind.k | ⊢ (𝜑 → 𝐾 ∈ 𝐵) |
eliind.d | ⊢ (𝑥 = 𝐾 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) |
Ref | Expression |
---|---|
eliind | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliind.d | . 2 ⊢ (𝑥 = 𝐾 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) | |
2 | eliind.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) | |
3 | eliin 5001 | . . . 4 ⊢ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
5 | 2, 4 | mpbid 231 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
6 | eliind.k | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐵) | |
7 | 1, 5, 6 | rspcdva 3613 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-iin 4999 |
This theorem is referenced by: iooiinioc 44255 hspdifhsp 45318 smflimlem3 45475 smfsuplem1 45513 smflimsuplem4 45525 |
Copyright terms: Public domain | W3C validator |