Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem4 Structured version   Visualization version   GIF version

Theorem smflimsuplem4 46828
Description: If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem4.1 𝑛𝜑
smflimsuplem4.m (𝜑𝑀 ∈ ℤ)
smflimsuplem4.z 𝑍 = (ℤ𝑀)
smflimsuplem4.s (𝜑𝑆 ∈ SAlg)
smflimsuplem4.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem4.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem4.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem4.n (𝜑𝑁𝑍)
smflimsuplem4.i (𝜑𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
smflimsuplem4.c (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
Assertion
Ref Expression
smflimsuplem4 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
Distinct variable groups:   𝑛,𝐸,𝑥   𝑚,𝐹,𝑛,𝑥   𝑛,𝐻   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑍,𝑛   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑚)   𝐻(𝑥,𝑚)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑍(𝑥)

Proof of Theorem smflimsuplem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑚𝜑
2 smflimsuplem4.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 smflimsuplem4.z . . . . 5 𝑍 = (ℤ𝑀)
4 smflimsuplem4.n . . . . 5 (𝜑𝑁𝑍)
53, 4eluzelz2d 45416 . . . 4 (𝜑𝑁 ∈ ℤ)
6 eqid 2730 . . . 4 (ℤ𝑁) = (ℤ𝑁)
7 fvexd 6876 . . . 4 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
8 fvexd 6876 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ V)
91, 2, 5, 3, 6, 7, 8limsupequzmpt 45734 . . 3 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑥))))
10 smflimsuplem4.s . . . . . . . 8 (𝜑𝑆 ∈ SAlg)
1110adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑆 ∈ SAlg)
123, 4uzssd2 45420 . . . . . . . . 9 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
1312sselda 3949 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
14 smflimsuplem4.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1514ffvelcdmda 7059 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
1613, 15syldan 591 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
17 eqid 2730 . . . . . . 7 dom (𝐹𝑚) = dom (𝐹𝑚)
1811, 16, 17smff 46737 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
19 smflimsuplem4.e . . . . . . . 8 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
20 smflimsuplem4.h . . . . . . . 8 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
213, 19, 20, 13smflimsuplem1 46825 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → dom (𝐻𝑚) ⊆ dom (𝐹𝑚))
22 smflimsuplem4.i . . . . . . . . 9 (𝜑𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
2322adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
24 simpr 484 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁))
25 fveq2 6861 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐻𝑛) = (𝐻𝑚))
2625dmeqd 5872 . . . . . . . . 9 (𝑛 = 𝑚 → dom (𝐻𝑛) = dom (𝐻𝑚))
2726eleq2d 2815 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥 ∈ dom (𝐻𝑛) ↔ 𝑥 ∈ dom (𝐻𝑚)))
2823, 24, 27eliind 45072 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 ∈ dom (𝐻𝑚))
2921, 28sseldd 3950 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 ∈ dom (𝐹𝑚))
3018, 29ffvelcdmd 7060 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
3130rexrd 11231 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ ℝ*)
321, 5, 6, 31limsupvaluzmpt 45722 . . 3 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑥))) = inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
339, 32eqtrd 2765 . 2 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
34 smflimsuplem4.1 . . 3 𝑛𝜑
3512adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → (ℤ𝑁) ⊆ 𝑍)
36 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
3735, 36sseldd 3950 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
3820a1i 11 . . . . . . . . . . . . 13 (𝜑𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))))
39 fvex 6874 . . . . . . . . . . . . . . 15 (𝐸𝑛) ∈ V
4039mptex 7200 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
4140a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
4238, 41fvmpt2d 6984 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
4337, 42syldan 591 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
4443dmeqd 5872 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝐻𝑛) = dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
45 xrltso 13108 . . . . . . . . . . . . 13 < Or ℝ*
4645supex 9422 . . . . . . . . . . . 12 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V
47 eqid 2730 . . . . . . . . . . . 12 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
4846, 47dmmpti 6665 . . . . . . . . . . 11 dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛)
4948a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛))
5044, 49eqtrd 2765 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝐻𝑛) = (𝐸𝑛))
5134, 50iineq2d 4982 . . . . . . . 8 (𝜑 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛) = 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
5222, 51eleqtrd 2831 . . . . . . 7 (𝜑𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
5352adantr 480 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
54 eliinid 45112 . . . . . 6 ((𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ (𝐸𝑛))
5553, 36, 54syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ (𝐸𝑛))
5646a1i 11 . . . . . 6 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑥 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V)
5743, 56fvmpt2d 6984 . . . . 5 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑥 ∈ (𝐸𝑛)) → ((𝐻𝑛)‘𝑥) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
5855, 57mpdan 687 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
59 eqid 2730 . . . . . . . . . 10 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
603eluzelz2 45406 . . . . . . . . . . . . 13 (𝑛𝑍𝑛 ∈ ℤ)
61 eqid 2730 . . . . . . . . . . . . 13 (ℤ𝑛) = (ℤ𝑛)
6260, 61uzn0d 45428 . . . . . . . . . . . 12 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
63 fvex 6874 . . . . . . . . . . . . . . 15 (𝐹𝑚) ∈ V
6463dmex 7888 . . . . . . . . . . . . . 14 dom (𝐹𝑚) ∈ V
6564rgenw 3049 . . . . . . . . . . . . 13 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
6665a1i 11 . . . . . . . . . . . 12 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6762, 66iinexd 45134 . . . . . . . . . . 11 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6867adantl 481 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6959, 68rabexd 5298 . . . . . . . . 9 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
7037, 69syldan 591 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
7119fvmpt2 6982 . . . . . . . 8 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
7237, 70, 71syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
7355, 72eleqtrd 2831 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
74 rabid 3430 . . . . . 6 (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
7573, 74sylib 218 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
7675simprd 495 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)
7758, 76eqeltrd 2829 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) ∈ ℝ)
7834, 58mpteq2da 5202 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) = (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
79 nfv 1914 . . . . 5 𝑘𝜑
80 fveq2 6861 . . . . . . . 8 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
8180mpteq1d 5200 . . . . . . 7 (𝑛 = 𝑘 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)))
8281rneqd 5905 . . . . . 6 (𝑛 = 𝑘 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)))
8382supeq1d 9404 . . . . 5 (𝑛 = 𝑘 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
84 nfv 1914 . . . . . . . 8 𝑚(𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1))
85 eluzelz 12810 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
8685adantr 480 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 ∈ ℤ)
87 simpr 484 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 = (𝑛 + 1))
8886peano2zd 12648 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (𝑛 + 1) ∈ ℤ)
8987, 88eqeltrd 2829 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ ℤ)
9086zred 12645 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 ∈ ℝ)
9189zred 12645 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ ℝ)
9290ltp1d 12120 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 < (𝑛 + 1))
9387eqcomd 2736 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (𝑛 + 1) = 𝑘)
9492, 93breqtrd 5136 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 < 𝑘)
9590, 91, 94ltled 11329 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛𝑘)
9661, 86, 89, 95eluzd 45412 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ (ℤ𝑛))
97 uzss 12823 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑛) → (ℤ𝑘) ⊆ (ℤ𝑛))
9896, 97syl 17 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (ℤ𝑘) ⊆ (ℤ𝑛))
99 fvexd 6876 . . . . . . . 8 (((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑚)‘𝑥) ∈ V)
10084, 98, 99rnmptss2 45258 . . . . . . 7 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
1011003adant1 1130 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
102 nfv 1914 . . . . . . . . 9 𝑚(𝜑𝑛 ∈ (ℤ𝑁))
103 eqid 2730 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))
104 simpll 766 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
10537, 104syldanl 602 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
1066uztrn2 12819 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
107106adantll 714 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
108105, 107, 30syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
109102, 103, 108rnmptssd 45197 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ)
110 ressxr 11225 . . . . . . . . 9 ℝ ⊆ ℝ*
111110a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ℝ ⊆ ℝ*)
112109, 111sstrd 3960 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*)
1131123adant3 1132 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*)
114 supxrss 13299 . . . . . 6 ((ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ∧ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*) → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ≤ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
115101, 113, 114syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ≤ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
116 smflimsuplem4.c . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
1173fvexi 6875 . . . . . . . . 9 𝑍 ∈ V
118117a1i 11 . . . . . . . 8 (𝜑𝑍 ∈ V)
119 fvexd 6876 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐻𝑛)‘𝑥) ∈ V)
120 fvexd 6876 . . . . . . . 8 (𝜑 → (ℤ𝑁) ∈ V)
12134, 36ssdf 45076 . . . . . . . 8 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑁))
122 fvexd 6876 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) ∈ V)
123 eqidd 2731 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) = ((𝐻𝑛)‘𝑥))
12434, 5, 6, 118, 12, 119, 120, 121, 122, 123climeldmeqmpt 45673 . . . . . . 7 (𝜑 → ((𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ ↔ (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ ))
125116, 124mpbid 232 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
12678, 125eqeltrrd 2830 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ dom ⇝ )
12734, 79, 5, 6, 76, 83, 115, 126climinf2mpt 45719 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ⇝ inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
12878, 127eqbrtrd 5132 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ⇝ inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
12934, 5, 6, 77, 128climreclmpt 45689 . 2 (𝜑 → inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ) ∈ ℝ)
13033, 129eqeltrd 2829 1 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  wss 3917   ciin 4959   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  supcsup 9398  infcinf 9399  cr 11074  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cz 12536  cuz 12800  lim supclsp 15443  cli 15457  SAlgcsalg 46313  SMblFncsmblfn 46700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ioo 13317  df-ico 13319  df-fz 13476  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-smblfn 46701
This theorem is referenced by:  smflimsuplem7  46831
  Copyright terms: Public domain W3C validator