Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem4 Structured version   Visualization version   GIF version

Theorem smflimsuplem4 43104
Description: If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem4.1 𝑛𝜑
smflimsuplem4.m (𝜑𝑀 ∈ ℤ)
smflimsuplem4.z 𝑍 = (ℤ𝑀)
smflimsuplem4.s (𝜑𝑆 ∈ SAlg)
smflimsuplem4.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem4.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem4.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem4.n (𝜑𝑁𝑍)
smflimsuplem4.i (𝜑𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
smflimsuplem4.c (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
Assertion
Ref Expression
smflimsuplem4 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
Distinct variable groups:   𝑛,𝐸,𝑥   𝑚,𝐹,𝑛,𝑥   𝑛,𝐻   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑍,𝑛   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑚)   𝐻(𝑥,𝑚)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑍(𝑥)

Proof of Theorem smflimsuplem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . 4 𝑚𝜑
2 smflimsuplem4.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 smflimsuplem4.z . . . . 5 𝑍 = (ℤ𝑀)
4 smflimsuplem4.n . . . . 5 (𝜑𝑁𝑍)
53, 4eluzelz2d 41694 . . . 4 (𝜑𝑁 ∈ ℤ)
6 eqid 2823 . . . 4 (ℤ𝑁) = (ℤ𝑁)
7 fvexd 6687 . . . 4 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
8 fvexd 6687 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ V)
91, 2, 5, 3, 6, 7, 8limsupequzmpt 42017 . . 3 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑥))))
10 smflimsuplem4.s . . . . . . . 8 (𝜑𝑆 ∈ SAlg)
1110adantr 483 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑆 ∈ SAlg)
123, 4uzssd2 41698 . . . . . . . . 9 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
1312sselda 3969 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
14 smflimsuplem4.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1514ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
1613, 15syldan 593 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
17 eqid 2823 . . . . . . 7 dom (𝐹𝑚) = dom (𝐹𝑚)
1811, 16, 17smff 43016 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
19 smflimsuplem4.e . . . . . . . 8 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
20 smflimsuplem4.h . . . . . . . 8 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
213, 19, 20, 13smflimsuplem1 43101 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → dom (𝐻𝑚) ⊆ dom (𝐹𝑚))
22 smflimsuplem4.i . . . . . . . . 9 (𝜑𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
2322adantr 483 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
24 simpr 487 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁))
25 fveq2 6672 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐻𝑛) = (𝐻𝑚))
2625dmeqd 5776 . . . . . . . . 9 (𝑛 = 𝑚 → dom (𝐻𝑛) = dom (𝐻𝑚))
2726eleq2d 2900 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥 ∈ dom (𝐻𝑛) ↔ 𝑥 ∈ dom (𝐻𝑚)))
2823, 24, 27eliind 41340 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 ∈ dom (𝐻𝑚))
2921, 28sseldd 3970 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 ∈ dom (𝐹𝑚))
3018, 29ffvelrnd 6854 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
3130rexrd 10693 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ ℝ*)
321, 5, 6, 31limsupvaluzmpt 42005 . . 3 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑥))) = inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
339, 32eqtrd 2858 . 2 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
34 smflimsuplem4.1 . . 3 𝑛𝜑
3512adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → (ℤ𝑁) ⊆ 𝑍)
36 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
3735, 36sseldd 3970 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
3820a1i 11 . . . . . . . . . . . . 13 (𝜑𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))))
39 fvex 6685 . . . . . . . . . . . . . . 15 (𝐸𝑛) ∈ V
4039mptex 6988 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
4140a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
4238, 41fvmpt2d 6783 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
4337, 42syldan 593 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
4443dmeqd 5776 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝐻𝑛) = dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
45 xrltso 12537 . . . . . . . . . . . . 13 < Or ℝ*
4645supex 8929 . . . . . . . . . . . 12 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V
47 eqid 2823 . . . . . . . . . . . 12 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
4846, 47dmmpti 6494 . . . . . . . . . . 11 dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛)
4948a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛))
5044, 49eqtrd 2858 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝐻𝑛) = (𝐸𝑛))
5134, 50iineq2d 4944 . . . . . . . 8 (𝜑 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛) = 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
5222, 51eleqtrd 2917 . . . . . . 7 (𝜑𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
5352adantr 483 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
54 eliinid 41384 . . . . . 6 ((𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ (𝐸𝑛))
5553, 36, 54syl2anc 586 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ (𝐸𝑛))
5646a1i 11 . . . . . 6 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑥 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V)
5743, 56fvmpt2d 6783 . . . . 5 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑥 ∈ (𝐸𝑛)) → ((𝐻𝑛)‘𝑥) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
5855, 57mpdan 685 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
59 eqid 2823 . . . . . . . . . 10 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
603eluzelz2 41683 . . . . . . . . . . . . 13 (𝑛𝑍𝑛 ∈ ℤ)
61 eqid 2823 . . . . . . . . . . . . 13 (ℤ𝑛) = (ℤ𝑛)
6260, 61uzn0d 41706 . . . . . . . . . . . 12 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
63 fvex 6685 . . . . . . . . . . . . . . 15 (𝐹𝑚) ∈ V
6463dmex 7618 . . . . . . . . . . . . . 14 dom (𝐹𝑚) ∈ V
6564rgenw 3152 . . . . . . . . . . . . 13 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
6665a1i 11 . . . . . . . . . . . 12 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6762, 66iinexd 41407 . . . . . . . . . . 11 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6867adantl 484 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6959, 68rabexd 5238 . . . . . . . . 9 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
7037, 69syldan 593 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
7119fvmpt2 6781 . . . . . . . 8 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
7237, 70, 71syl2anc 586 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
7355, 72eleqtrd 2917 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
74 rabid 3380 . . . . . 6 (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
7573, 74sylib 220 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
7675simprd 498 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)
7758, 76eqeltrd 2915 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) ∈ ℝ)
7834, 58mpteq2da 5162 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) = (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
79 nfv 1915 . . . . 5 𝑘𝜑
80 fveq2 6672 . . . . . . . 8 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
8180mpteq1d 5157 . . . . . . 7 (𝑛 = 𝑘 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)))
8281rneqd 5810 . . . . . 6 (𝑛 = 𝑘 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)))
8382supeq1d 8912 . . . . 5 (𝑛 = 𝑘 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
84 nfv 1915 . . . . . . . 8 𝑚(𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1))
85 eluzelz 12256 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
8685adantr 483 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 ∈ ℤ)
87 simpr 487 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 = (𝑛 + 1))
8886peano2zd 12093 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (𝑛 + 1) ∈ ℤ)
8987, 88eqeltrd 2915 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ ℤ)
9086zred 12090 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 ∈ ℝ)
9189zred 12090 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ ℝ)
9290ltp1d 11572 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 < (𝑛 + 1))
9387eqcomd 2829 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (𝑛 + 1) = 𝑘)
9492, 93breqtrd 5094 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 < 𝑘)
9590, 91, 94ltled 10790 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛𝑘)
9661, 86, 89, 95eluzd 41689 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ (ℤ𝑛))
97 uzss 12268 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑛) → (ℤ𝑘) ⊆ (ℤ𝑛))
9896, 97syl 17 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (ℤ𝑘) ⊆ (ℤ𝑛))
99 fvexd 6687 . . . . . . . 8 (((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑚)‘𝑥) ∈ V)
10084, 98, 99rnmptss2 41536 . . . . . . 7 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
1011003adant1 1126 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
102 nfv 1915 . . . . . . . . 9 𝑚(𝜑𝑛 ∈ (ℤ𝑁))
103 eqid 2823 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))
104 simpll 765 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
10537, 104syldanl 603 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
1066uztrn2 12265 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
107106adantll 712 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
108105, 107, 30syl2anc 586 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
109102, 103, 108rnmptssd 41465 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ)
110 ressxr 10687 . . . . . . . . 9 ℝ ⊆ ℝ*
111110a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ℝ ⊆ ℝ*)
112109, 111sstrd 3979 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*)
1131123adant3 1128 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*)
114 supxrss 12728 . . . . . 6 ((ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ∧ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*) → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ≤ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
115101, 113, 114syl2anc 586 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ≤ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
116 smflimsuplem4.c . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
1173fvexi 6686 . . . . . . . . 9 𝑍 ∈ V
118117a1i 11 . . . . . . . 8 (𝜑𝑍 ∈ V)
119 fvexd 6687 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐻𝑛)‘𝑥) ∈ V)
120 fvexd 6687 . . . . . . . 8 (𝜑 → (ℤ𝑁) ∈ V)
12134, 36ssdf 41346 . . . . . . . 8 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑁))
122 fvexd 6687 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) ∈ V)
123 eqidd 2824 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) = ((𝐻𝑛)‘𝑥))
12434, 5, 6, 118, 12, 119, 120, 121, 122, 123climeldmeqmpt 41956 . . . . . . 7 (𝜑 → ((𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ ↔ (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ ))
125116, 124mpbid 234 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
12678, 125eqeltrrd 2916 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ dom ⇝ )
12734, 79, 5, 6, 76, 83, 115, 126climinf2mpt 42002 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ⇝ inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
12878, 127eqbrtrd 5090 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ⇝ inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
12934, 5, 6, 77, 128climreclmpt 41972 . 2 (𝜑 → inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ) ∈ ℝ)
13033, 129eqeltrd 2915 1 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wnf 1784  wcel 2114  wral 3140  {crab 3144  Vcvv 3496  wss 3938   ciin 4922   class class class wbr 5068  cmpt 5148  dom cdm 5557  ran crn 5558  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  infcinf 8907  cr 10538  1c1 10540   + caddc 10542  *cxr 10676   < clt 10677  cle 10678  cz 11984  cuz 12246  lim supclsp 14829  cli 14843  SAlgcsalg 42600  SMblFncsmblfn 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-ioo 12745  df-ico 12747  df-fz 12896  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-smblfn 42985
This theorem is referenced by:  smflimsuplem7  43107
  Copyright terms: Public domain W3C validator