Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimsuplem4 Structured version   Visualization version   GIF version

Theorem smflimsuplem4 46805
Description: If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflimsuplem4.1 𝑛𝜑
smflimsuplem4.m (𝜑𝑀 ∈ ℤ)
smflimsuplem4.z 𝑍 = (ℤ𝑀)
smflimsuplem4.s (𝜑𝑆 ∈ SAlg)
smflimsuplem4.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimsuplem4.e 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
smflimsuplem4.h 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
smflimsuplem4.n (𝜑𝑁𝑍)
smflimsuplem4.i (𝜑𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
smflimsuplem4.c (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
Assertion
Ref Expression
smflimsuplem4 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
Distinct variable groups:   𝑛,𝐸,𝑥   𝑚,𝐹,𝑛,𝑥   𝑛,𝐻   𝑚,𝑀   𝑚,𝑁,𝑛   𝑚,𝑍,𝑛   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐸(𝑚)   𝐻(𝑥,𝑚)   𝑀(𝑥,𝑛)   𝑁(𝑥)   𝑍(𝑥)

Proof of Theorem smflimsuplem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑚𝜑
2 smflimsuplem4.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 smflimsuplem4.z . . . . 5 𝑍 = (ℤ𝑀)
4 smflimsuplem4.n . . . . 5 (𝜑𝑁𝑍)
53, 4eluzelz2d 45393 . . . 4 (𝜑𝑁 ∈ ℤ)
6 eqid 2729 . . . 4 (ℤ𝑁) = (ℤ𝑁)
7 fvexd 6841 . . . 4 ((𝜑𝑚𝑍) → ((𝐹𝑚)‘𝑥) ∈ V)
8 fvexd 6841 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ V)
91, 2, 5, 3, 6, 7, 8limsupequzmpt 45711 . . 3 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑥))))
10 smflimsuplem4.s . . . . . . . 8 (𝜑𝑆 ∈ SAlg)
1110adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑆 ∈ SAlg)
123, 4uzssd2 45397 . . . . . . . . 9 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
1312sselda 3937 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
14 smflimsuplem4.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1514ffvelcdmda 7022 . . . . . . . 8 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
1613, 15syldan 591 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
17 eqid 2729 . . . . . . 7 dom (𝐹𝑚) = dom (𝐹𝑚)
1811, 16, 17smff 46714 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑁)) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
19 smflimsuplem4.e . . . . . . . 8 𝐸 = (𝑛𝑍 ↦ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
20 smflimsuplem4.h . . . . . . . 8 𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
213, 19, 20, 13smflimsuplem1 46802 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → dom (𝐻𝑚) ⊆ dom (𝐹𝑚))
22 smflimsuplem4.i . . . . . . . . 9 (𝜑𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
2322adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛))
24 simpr 484 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑚 ∈ (ℤ𝑁))
25 fveq2 6826 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐻𝑛) = (𝐻𝑚))
2625dmeqd 5852 . . . . . . . . 9 (𝑛 = 𝑚 → dom (𝐻𝑛) = dom (𝐻𝑚))
2726eleq2d 2814 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥 ∈ dom (𝐻𝑛) ↔ 𝑥 ∈ dom (𝐻𝑚)))
2823, 24, 27eliind 45049 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 ∈ dom (𝐻𝑚))
2921, 28sseldd 3938 . . . . . 6 ((𝜑𝑚 ∈ (ℤ𝑁)) → 𝑥 ∈ dom (𝐹𝑚))
3018, 29ffvelcdmd 7023 . . . . 5 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
3130rexrd 11184 . . . 4 ((𝜑𝑚 ∈ (ℤ𝑁)) → ((𝐹𝑚)‘𝑥) ∈ ℝ*)
321, 5, 6, 31limsupvaluzmpt 45699 . . 3 (𝜑 → (lim sup‘(𝑚 ∈ (ℤ𝑁) ↦ ((𝐹𝑚)‘𝑥))) = inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
339, 32eqtrd 2764 . 2 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
34 smflimsuplem4.1 . . 3 𝑛𝜑
3512adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → (ℤ𝑁) ⊆ 𝑍)
36 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
3735, 36sseldd 3938 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
3820a1i 11 . . . . . . . . . . . . 13 (𝜑𝐻 = (𝑛𝑍 ↦ (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))))
39 fvex 6839 . . . . . . . . . . . . . . 15 (𝐸𝑛) ∈ V
4039mptex 7163 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V
4140a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ V)
4238, 41fvmpt2d 6947 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
4337, 42syldan 591 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐻𝑛) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
4443dmeqd 5852 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝐻𝑛) = dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
45 xrltso 13061 . . . . . . . . . . . . 13 < Or ℝ*
4645supex 9373 . . . . . . . . . . . 12 sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V
47 eqid 2729 . . . . . . . . . . . 12 (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
4846, 47dmmpti 6630 . . . . . . . . . . 11 dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛)
4948a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝑥 ∈ (𝐸𝑛) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) = (𝐸𝑛))
5044, 49eqtrd 2764 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → dom (𝐻𝑛) = (𝐸𝑛))
5134, 50iineq2d 4968 . . . . . . . 8 (𝜑 𝑛 ∈ (ℤ𝑁)dom (𝐻𝑛) = 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
5222, 51eleqtrd 2830 . . . . . . 7 (𝜑𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
5352adantr 480 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛))
54 eliinid 45089 . . . . . 6 ((𝑥 𝑛 ∈ (ℤ𝑁)(𝐸𝑛) ∧ 𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ (𝐸𝑛))
5553, 36, 54syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ (𝐸𝑛))
5646a1i 11 . . . . . 6 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑥 ∈ (𝐸𝑛)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ V)
5743, 56fvmpt2d 6947 . . . . 5 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑥 ∈ (𝐸𝑛)) → ((𝐻𝑛)‘𝑥) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
5855, 57mpdan 687 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) = sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
59 eqid 2729 . . . . . . . . . 10 {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}
603eluzelz2 45383 . . . . . . . . . . . . 13 (𝑛𝑍𝑛 ∈ ℤ)
61 eqid 2729 . . . . . . . . . . . . 13 (ℤ𝑛) = (ℤ𝑛)
6260, 61uzn0d 45405 . . . . . . . . . . . 12 (𝑛𝑍 → (ℤ𝑛) ≠ ∅)
63 fvex 6839 . . . . . . . . . . . . . . 15 (𝐹𝑚) ∈ V
6463dmex 7849 . . . . . . . . . . . . . 14 dom (𝐹𝑚) ∈ V
6564rgenw 3048 . . . . . . . . . . . . 13 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V
6665a1i 11 . . . . . . . . . . . 12 (𝑛𝑍 → ∀𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6762, 66iinexd 45111 . . . . . . . . . . 11 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6867adantl 481 . . . . . . . . . 10 ((𝜑𝑛𝑍) → 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∈ V)
6959, 68rabexd 5282 . . . . . . . . 9 ((𝜑𝑛𝑍) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
7037, 69syldan 591 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V)
7119fvmpt2 6945 . . . . . . . 8 ((𝑛𝑍 ∧ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ∈ V) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
7237, 70, 71syl2anc 584 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐸𝑛) = {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
7355, 72eleqtrd 2830 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ})
74 rabid 3418 . . . . . 6 (𝑥 ∈ {𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ} ↔ (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
7573, 74sylib 218 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ))
7675simprd 495 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ)
7758, 76eqeltrd 2828 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) ∈ ℝ)
7834, 58mpteq2da 5187 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) = (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )))
79 nfv 1914 . . . . 5 𝑘𝜑
80 fveq2 6826 . . . . . . . 8 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
8180mpteq1d 5185 . . . . . . 7 (𝑛 = 𝑘 → (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)))
8281rneqd 5884 . . . . . 6 (𝑛 = 𝑘 → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)))
8382supeq1d 9355 . . . . 5 (𝑛 = 𝑘 → sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) = sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
84 nfv 1914 . . . . . . . 8 𝑚(𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1))
85 eluzelz 12763 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → 𝑛 ∈ ℤ)
8685adantr 480 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 ∈ ℤ)
87 simpr 484 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 = (𝑛 + 1))
8886peano2zd 12601 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (𝑛 + 1) ∈ ℤ)
8987, 88eqeltrd 2828 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ ℤ)
9086zred 12598 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 ∈ ℝ)
9189zred 12598 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ ℝ)
9290ltp1d 12073 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 < (𝑛 + 1))
9387eqcomd 2735 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (𝑛 + 1) = 𝑘)
9492, 93breqtrd 5121 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛 < 𝑘)
9590, 91, 94ltled 11282 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑛𝑘)
9661, 86, 89, 95eluzd 45389 . . . . . . . . 9 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → 𝑘 ∈ (ℤ𝑛))
97 uzss 12776 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑛) → (ℤ𝑘) ⊆ (ℤ𝑛))
9896, 97syl 17 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → (ℤ𝑘) ⊆ (ℤ𝑛))
99 fvexd 6841 . . . . . . . 8 (((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) ∧ 𝑚 ∈ (ℤ𝑘)) → ((𝐹𝑚)‘𝑥) ∈ V)
10084, 98, 99rnmptss2 45235 . . . . . . 7 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
1011003adant1 1130 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)))
102 nfv 1914 . . . . . . . . 9 𝑚(𝜑𝑛 ∈ (ℤ𝑁))
103 eqid 2729 . . . . . . . . 9 (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) = (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥))
104 simpll 766 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
10537, 104syldanl 602 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
1066uztrn2 12772 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
107106adantll 714 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚 ∈ (ℤ𝑁))
108105, 107, 30syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ (ℤ𝑛)) → ((𝐹𝑚)‘𝑥) ∈ ℝ)
109102, 103, 108rnmptssd 45174 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ)
110 ressxr 11178 . . . . . . . . 9 ℝ ⊆ ℝ*
111110a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ℝ ⊆ ℝ*)
112109, 111sstrd 3948 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑁)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*)
1131123adant3 1132 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*)
114 supxrss 13252 . . . . . 6 ((ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ∧ ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)) ⊆ ℝ*) → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ≤ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
115101, 113, 114syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑁) ∧ 𝑘 = (𝑛 + 1)) → sup(ran (𝑚 ∈ (ℤ𝑘) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ) ≤ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < ))
116 smflimsuplem4.c . . . . . . 7 (𝜑 → (𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
1173fvexi 6840 . . . . . . . . 9 𝑍 ∈ V
118117a1i 11 . . . . . . . 8 (𝜑𝑍 ∈ V)
119 fvexd 6841 . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐻𝑛)‘𝑥) ∈ V)
120 fvexd 6841 . . . . . . . 8 (𝜑 → (ℤ𝑁) ∈ V)
12134, 36ssdf 45053 . . . . . . . 8 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑁))
122 fvexd 6841 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) ∈ V)
123 eqidd 2730 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑁)) → ((𝐻𝑛)‘𝑥) = ((𝐻𝑛)‘𝑥))
12434, 5, 6, 118, 12, 119, 120, 121, 122, 123climeldmeqmpt 45650 . . . . . . 7 (𝜑 → ((𝑛𝑍 ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ ↔ (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ ))
125116, 124mpbid 232 . . . . . 6 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ∈ dom ⇝ )
12678, 125eqeltrrd 2829 . . . . 5 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ∈ dom ⇝ )
12734, 79, 5, 6, 76, 83, 115, 126climinf2mpt 45696 . . . 4 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )) ⇝ inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
12878, 127eqbrtrd 5117 . . 3 (𝜑 → (𝑛 ∈ (ℤ𝑁) ↦ ((𝐻𝑛)‘𝑥)) ⇝ inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ))
12934, 5, 6, 77, 128climreclmpt 45666 . 2 (𝜑 → inf(ran (𝑛 ∈ (ℤ𝑁) ↦ sup(ran (𝑚 ∈ (ℤ𝑛) ↦ ((𝐹𝑚)‘𝑥)), ℝ*, < )), ℝ*, < ) ∈ ℝ)
13033, 129eqeltrd 2828 1 (𝜑 → (lim sup‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  wss 3905   ciin 4945   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  infcinf 9350  cr 11027  1c1 11029   + caddc 11031  *cxr 11167   < clt 11168  cle 11169  cz 12489  cuz 12753  lim supclsp 15395  cli 15409  SAlgcsalg 46290  SMblFncsmblfn 46677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-ioo 13270  df-ico 13272  df-fz 13429  df-fl 13714  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-smblfn 46678
This theorem is referenced by:  smflimsuplem7  46808
  Copyright terms: Public domain W3C validator