Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjsnxp Structured version   Visualization version   GIF version

Theorem disjsnxp 42099
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
disjsnxp Disj 𝑗𝐴 ({𝑗} × 𝐵)
Distinct variable group:   𝐴,𝑗
Allowed substitution hint:   𝐵(𝑗)

Proof of Theorem disjsnxp
StepHypRef Expression
1 sndisj 5023 . . . 4 Disj 𝑗𝐴 {𝑗}
21a1i 11 . . 3 (⊤ → Disj 𝑗𝐴 {𝑗})
32disjxp1 42098 . 2 (⊤ → Disj 𝑗𝐴 ({𝑗} × 𝐵))
43mptru 1545 1 Disj 𝑗𝐴 ({𝑗} × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wtru 1539  {csn 4522  Disj wdisj 4997   × cxp 5522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-disj 4998  df-opab 5095  df-xp 5530  df-rel 5531
This theorem is referenced by:  sge0xp  43456
  Copyright terms: Public domain W3C validator