Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjsnxp Structured version   Visualization version   GIF version

Theorem disjsnxp 44059
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
disjsnxp Disj 𝑗𝐴 ({𝑗} × 𝐵)
Distinct variable group:   𝐴,𝑗
Allowed substitution hint:   𝐵(𝑗)

Proof of Theorem disjsnxp
StepHypRef Expression
1 sndisj 5139 . . . 4 Disj 𝑗𝐴 {𝑗}
21a1i 11 . . 3 (⊤ → Disj 𝑗𝐴 {𝑗})
32disjxp1 44058 . 2 (⊤ → Disj 𝑗𝐴 ({𝑗} × 𝐵))
43mptru 1548 1 Disj 𝑗𝐴 ({𝑗} × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  {csn 4628  Disj wdisj 5113   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rmo 3376  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-disj 5114  df-opab 5211  df-xp 5682  df-rel 5683
This theorem is referenced by:  sge0xp  45444
  Copyright terms: Public domain W3C validator