Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjsnxp Structured version   Visualization version   GIF version

Theorem disjsnxp 44972
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
disjsnxp Disj 𝑗𝐴 ({𝑗} × 𝐵)
Distinct variable group:   𝐴,𝑗
Allowed substitution hint:   𝐵(𝑗)

Proof of Theorem disjsnxp
StepHypRef Expression
1 sndisj 5158 . . . 4 Disj 𝑗𝐴 {𝑗}
21a1i 11 . . 3 (⊤ → Disj 𝑗𝐴 {𝑗})
32disjxp1 44971 . 2 (⊤ → Disj 𝑗𝐴 ({𝑗} × 𝐵))
43mptru 1544 1 Disj 𝑗𝐴 ({𝑗} × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wtru 1538  {csn 4648  Disj wdisj 5133   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-disj 5134  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  sge0xp  46350
  Copyright terms: Public domain W3C validator