Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjsnxp | Structured version Visualization version GIF version |
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
disjsnxp | ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sndisj 5023 | . . . 4 ⊢ Disj 𝑗 ∈ 𝐴 {𝑗} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Disj 𝑗 ∈ 𝐴 {𝑗}) |
3 | 2 | disjxp1 42098 | . 2 ⊢ (⊤ → Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
4 | 3 | mptru 1545 | 1 ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1539 {csn 4522 Disj wdisj 4997 × cxp 5522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-disj 4998 df-opab 5095 df-xp 5530 df-rel 5531 |
This theorem is referenced by: sge0xp 43456 |
Copyright terms: Public domain | W3C validator |