![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjsnxp | Structured version Visualization version GIF version |
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
disjsnxp | ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sndisj 5140 | . . . 4 ⊢ Disj 𝑗 ∈ 𝐴 {𝑗} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Disj 𝑗 ∈ 𝐴 {𝑗}) |
3 | 2 | disjxp1 45009 | . 2 ⊢ (⊤ → Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
4 | 3 | mptru 1544 | 1 ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 {csn 4631 Disj wdisj 5115 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-disj 5116 df-opab 5211 df-xp 5695 df-rel 5696 |
This theorem is referenced by: sge0xp 46385 |
Copyright terms: Public domain | W3C validator |