Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjsnxp | Structured version Visualization version GIF version |
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
disjsnxp | ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sndisj 5069 | . . . 4 ⊢ Disj 𝑗 ∈ 𝐴 {𝑗} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Disj 𝑗 ∈ 𝐴 {𝑗}) |
3 | 2 | disjxp1 42570 | . 2 ⊢ (⊤ → Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
4 | 3 | mptru 1548 | 1 ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1542 {csn 4566 Disj wdisj 5043 × cxp 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-disj 5044 df-opab 5141 df-xp 5594 df-rel 5595 |
This theorem is referenced by: sge0xp 43921 |
Copyright terms: Public domain | W3C validator |