Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjsnxp Structured version   Visualization version   GIF version

Theorem disjsnxp 42571
Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
disjsnxp Disj 𝑗𝐴 ({𝑗} × 𝐵)
Distinct variable group:   𝐴,𝑗
Allowed substitution hint:   𝐵(𝑗)

Proof of Theorem disjsnxp
StepHypRef Expression
1 sndisj 5069 . . . 4 Disj 𝑗𝐴 {𝑗}
21a1i 11 . . 3 (⊤ → Disj 𝑗𝐴 {𝑗})
32disjxp1 42570 . 2 (⊤ → Disj 𝑗𝐴 ({𝑗} × 𝐵))
43mptru 1548 1 Disj 𝑗𝐴 ({𝑗} × 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  {csn 4566  Disj wdisj 5043   × cxp 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-disj 5044  df-opab 5141  df-xp 5594  df-rel 5595
This theorem is referenced by:  sge0xp  43921
  Copyright terms: Public domain W3C validator