| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjsnxp | Structured version Visualization version GIF version | ||
| Description: The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| disjsnxp | ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sndisj 5085 | . . . 4 ⊢ Disj 𝑗 ∈ 𝐴 {𝑗} | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Disj 𝑗 ∈ 𝐴 {𝑗}) |
| 3 | 2 | disjxp1 45190 | . 2 ⊢ (⊤ → Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 4 | 3 | mptru 1548 | 1 ⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 {csn 4575 Disj wdisj 5060 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-disj 5061 df-opab 5156 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: sge0xp 46551 |
| Copyright terms: Public domain | W3C validator |