Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooiinioc Structured version   Visualization version   GIF version

Theorem iooiinioc 43101
Description: A left-open, right-closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
iooiinioc.1 (𝜑𝐴 ∈ ℝ*)
iooiinioc.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iooiinioc (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem iooiinioc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooiinioc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21adantr 481 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ*)
3 iooiinioc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43adantr 481 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ)
54rexrd 11034 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ*)
6 1nn 11993 . . . . . . . . . 10 1 ∈ ℕ
7 ioossre 13149 . . . . . . . . . 10 (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ
8 oveq2 7292 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
98oveq2d 7300 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1)))
109oveq2d 7300 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,)(𝐵 + (1 / 1))))
1110sseq1d 3953 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ))
1211rspcev 3562 . . . . . . . . . 10 ((1 ∈ ℕ ∧ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ) → ∃𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
136, 7, 12mp2an 689 . . . . . . . . 9 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
14 iinss 4987 . . . . . . . . 9 (∃𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
1513, 14ax-mp 5 . . . . . . . 8 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
1615a1i 11 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
17 simpr 485 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
1816, 17sseldd 3923 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ)
1918rexrd 11034 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*)
20 1red 10985 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
21 ax-1ne0 10949 . . . . . . . . . . 11 1 ≠ 0
2221a1i 11 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
2320, 20, 22redivcld 11812 . . . . . . . . 9 (𝜑 → (1 / 1) ∈ ℝ)
243, 23readdcld 11013 . . . . . . . 8 (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ)
2524rexrd 11034 . . . . . . 7 (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ*)
2625adantr 481 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝐵 + (1 / 1)) ∈ ℝ*)
27 id 22 . . . . . . . 8 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
286a1i 11 . . . . . . . 8 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 1 ∈ ℕ)
2910eleq2d 2825 . . . . . . . 8 (𝑛 = 1 → (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))))
3027, 28, 29eliind 42626 . . . . . . 7 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))
3130adantl 482 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))
32 ioogtlb 43040 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 1)) ∈ ℝ*𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))) → 𝐴 < 𝑥)
332, 26, 31, 32syl3anc 1370 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 < 𝑥)
34 nfv 1918 . . . . . . . 8 𝑛𝜑
35 nfcv 2908 . . . . . . . . 9 𝑛𝑥
36 nfii1 4960 . . . . . . . . 9 𝑛 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))
3735, 36nfel 2922 . . . . . . . 8 𝑛 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))
3834, 37nfan 1903 . . . . . . 7 𝑛(𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
39 simpll 764 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑)
40 iinss2 4988 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
4140adantl 482 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
42 simpl 483 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
4341, 42sseldd 3923 . . . . . . . . . 10 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
4443adantll 711 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
45 simpr 485 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
46 elioore 13118 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ)
4746adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
4847adantll 711 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
493adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
50 nnrecre 12024 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5150adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5249, 51readdcld 11013 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
5352adantlr 712 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
541adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
5554adantlr 712 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
5652rexrd 11034 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
5756adantlr 712 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
58 simplr 766 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
59 iooltub 43055 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛)))
6055, 57, 58, 59syl3anc 1370 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛)))
6148, 53, 60ltled 11132 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6239, 44, 45, 61syl21anc 835 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6362ex 413 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6438, 63ralrimi 3142 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6538, 19, 4xrralrecnnle 42929 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑥𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6664, 65mpbird 256 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥𝐵)
672, 5, 19, 33, 66eliocd 43052 . . . 4 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,]𝐵))
6867ralrimiva 3104 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵))
69 dfss3 3910 . . 3 ( 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵) ↔ ∀𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵))
7068, 69sylibr 233 . 2 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵))
711xrleidd 12895 . . . . . 6 (𝜑𝐴𝐴)
7271adantr 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐴)
73 1rp 12743 . . . . . . . . 9 1 ∈ ℝ+
7473a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
75 nnrp 12750 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7674, 75rpdivcld 12798 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7776adantl 482 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
7849, 77ltaddrpd 12814 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
79 iocssioo 13180 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ (𝐴𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8054, 56, 72, 78, 79syl22anc 836 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8180ralrimiva 3104 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
82 ssiin 4986 . . 3 ((𝐴(,]𝐵) ⊆ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8381, 82sylibr 233 . 2 (𝜑 → (𝐴(,]𝐵) ⊆ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
8470, 83eqssd 3939 1 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2107  wne 2944  wral 3065  wrex 3066  wss 3888   ciin 4926   class class class wbr 5075  (class class class)co 7284  cr 10879  0cc0 10880  1c1 10881   + caddc 10883  *cxr 11017   < clt 11018  cle 11019   / cdiv 11641  cn 11982  +crp 12739  (,)cioo 13088  (,]cioc 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-sup 9210  df-inf 9211  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-n0 12243  df-z 12329  df-uz 12592  df-q 12698  df-rp 12740  df-ioo 13092  df-ioc 13093  df-fl 13521
This theorem is referenced by:  iocborel  43902
  Copyright terms: Public domain W3C validator