Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooiinioc Structured version   Visualization version   GIF version

Theorem iooiinioc 45474
Description: A left-open, right-closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
iooiinioc.1 (𝜑𝐴 ∈ ℝ*)
iooiinioc.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iooiinioc (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem iooiinioc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooiinioc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21adantr 480 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ*)
3 iooiinioc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43adantr 480 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ)
54rexrd 11340 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ*)
6 1nn 12304 . . . . . . . . . 10 1 ∈ ℕ
7 ioossre 13468 . . . . . . . . . 10 (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ
8 oveq2 7456 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
98oveq2d 7464 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1)))
109oveq2d 7464 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,)(𝐵 + (1 / 1))))
1110sseq1d 4040 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ))
1211rspcev 3635 . . . . . . . . . 10 ((1 ∈ ℕ ∧ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ) → ∃𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
136, 7, 12mp2an 691 . . . . . . . . 9 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
14 iinss 5079 . . . . . . . . 9 (∃𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
1513, 14ax-mp 5 . . . . . . . 8 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
1615a1i 11 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
17 simpr 484 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
1816, 17sseldd 4009 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ)
1918rexrd 11340 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*)
20 1red 11291 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
21 ax-1ne0 11253 . . . . . . . . . . 11 1 ≠ 0
2221a1i 11 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
2320, 20, 22redivcld 12122 . . . . . . . . 9 (𝜑 → (1 / 1) ∈ ℝ)
243, 23readdcld 11319 . . . . . . . 8 (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ)
2524rexrd 11340 . . . . . . 7 (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ*)
2625adantr 480 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝐵 + (1 / 1)) ∈ ℝ*)
27 id 22 . . . . . . . 8 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
286a1i 11 . . . . . . . 8 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 1 ∈ ℕ)
2910eleq2d 2830 . . . . . . . 8 (𝑛 = 1 → (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))))
3027, 28, 29eliind 44973 . . . . . . 7 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))
3130adantl 481 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))
32 ioogtlb 45413 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 1)) ∈ ℝ*𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))) → 𝐴 < 𝑥)
332, 26, 31, 32syl3anc 1371 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 < 𝑥)
34 nfv 1913 . . . . . . . 8 𝑛𝜑
35 nfcv 2908 . . . . . . . . 9 𝑛𝑥
36 nfii1 5052 . . . . . . . . 9 𝑛 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))
3735, 36nfel 2923 . . . . . . . 8 𝑛 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))
3834, 37nfan 1898 . . . . . . 7 𝑛(𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
39 simpll 766 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑)
40 iinss2 5080 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
4140adantl 481 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
42 simpl 482 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
4341, 42sseldd 4009 . . . . . . . . . 10 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
4443adantll 713 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
45 simpr 484 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
46 elioore 13437 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ)
4746adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
4847adantll 713 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
493adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
50 nnrecre 12335 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5150adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5249, 51readdcld 11319 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
5352adantlr 714 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
541adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
5554adantlr 714 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
5652rexrd 11340 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
5756adantlr 714 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
58 simplr 768 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
59 iooltub 45428 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛)))
6055, 57, 58, 59syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛)))
6148, 53, 60ltled 11438 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6239, 44, 45, 61syl21anc 837 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6362ex 412 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6438, 63ralrimi 3263 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6538, 19, 4xrralrecnnle 45298 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑥𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6664, 65mpbird 257 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥𝐵)
672, 5, 19, 33, 66eliocd 45425 . . . 4 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,]𝐵))
6867ralrimiva 3152 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵))
69 dfss3 3997 . . 3 ( 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵) ↔ ∀𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵))
7068, 69sylibr 234 . 2 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵))
711xrleidd 13214 . . . . . 6 (𝜑𝐴𝐴)
7271adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐴)
73 1rp 13061 . . . . . . . . 9 1 ∈ ℝ+
7473a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
75 nnrp 13068 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7674, 75rpdivcld 13116 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7776adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
7849, 77ltaddrpd 13132 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
79 iocssioo 13499 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ (𝐴𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8054, 56, 72, 78, 79syl22anc 838 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8180ralrimiva 3152 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
82 ssiin 5078 . . 3 ((𝐴(,]𝐵) ⊆ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8381, 82sylibr 234 . 2 (𝜑 → (𝐴(,]𝐵) ⊆ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
8470, 83eqssd 4026 1 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976   ciin 5016   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325   / cdiv 11947  cn 12293  +crp 13057  (,)cioo 13407  (,]cioc 13408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ioc 13412  df-fl 13843
This theorem is referenced by:  iocborel  46277
  Copyright terms: Public domain W3C validator