Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooiinioc Structured version   Visualization version   GIF version

Theorem iooiinioc 41209
Description: A left-open, right-closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
iooiinioc.1 (𝜑𝐴 ∈ ℝ*)
iooiinioc.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
iooiinioc (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝜑,𝑛

Proof of Theorem iooiinioc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooiinioc.1 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21adantr 473 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈ ℝ*)
3 iooiinioc.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
43adantr 473 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ)
54rexrd 10482 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ*)
6 1nn 11444 . . . . . . . . . 10 1 ∈ ℕ
7 ioossre 12607 . . . . . . . . . 10 (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ
8 oveq2 6978 . . . . . . . . . . . . . 14 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
98oveq2d 6986 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1)))
109oveq2d 6986 . . . . . . . . . . . 12 (𝑛 = 1 → (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,)(𝐵 + (1 / 1))))
1110sseq1d 3884 . . . . . . . . . . 11 (𝑛 = 1 → ((𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ))
1211rspcev 3529 . . . . . . . . . 10 ((1 ∈ ℕ ∧ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ) → ∃𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
136, 7, 12mp2an 679 . . . . . . . . 9 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
14 iinss 4840 . . . . . . . . 9 (∃𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
1513, 14ax-mp 5 . . . . . . . 8 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ
1615a1i 11 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ)
17 simpr 477 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
1816, 17sseldd 3855 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ)
1918rexrd 10482 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*)
20 1red 10432 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
21 ax-1ne0 10396 . . . . . . . . . . 11 1 ≠ 0
2221a1i 11 . . . . . . . . . 10 (𝜑 → 1 ≠ 0)
2320, 20, 22redivcld 11261 . . . . . . . . 9 (𝜑 → (1 / 1) ∈ ℝ)
243, 23readdcld 10461 . . . . . . . 8 (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ)
2524rexrd 10482 . . . . . . 7 (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ*)
2625adantr 473 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝐵 + (1 / 1)) ∈ ℝ*)
27 id 22 . . . . . . . 8 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
286a1i 11 . . . . . . . 8 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 1 ∈ ℕ)
2910eleq2d 2845 . . . . . . . 8 (𝑛 = 1 → (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))))
3027, 28, 29eliind 40697 . . . . . . 7 (𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))
3130adantl 474 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))
32 ioogtlb 41147 . . . . . 6 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 1)) ∈ ℝ*𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))) → 𝐴 < 𝑥)
332, 26, 31, 32syl3anc 1351 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 < 𝑥)
34 nfv 1873 . . . . . . . 8 𝑛𝜑
35 nfcv 2926 . . . . . . . . 9 𝑛𝑥
36 nfii1 4818 . . . . . . . . 9 𝑛 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))
3735, 36nfel 2938 . . . . . . . 8 𝑛 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))
3834, 37nfan 1862 . . . . . . 7 𝑛(𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
39 simpll 754 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑)
40 iinss2 4841 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
4140adantl 474 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
42 simpl 475 . . . . . . . . . . 11 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
4341, 42sseldd 3855 . . . . . . . . . 10 ((𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
4443adantll 701 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
45 simpr 477 . . . . . . . . 9 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
46 elioore 12577 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ)
4746adantr 473 . . . . . . . . . . 11 ((𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
4847adantll 701 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
493adantr 473 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐵 ∈ ℝ)
50 nnrecre 11475 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
5150adantl 474 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5249, 51readdcld 10461 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
5352adantlr 702 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ)
541adantr 473 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
5554adantlr 702 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ*)
5652rexrd 10482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
5756adantlr 702 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ*)
58 simplr 756 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))))
59 iooltub 41163 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛)))
6055, 57, 58, 59syl3anc 1351 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛)))
6148, 53, 60ltled 10580 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6239, 44, 45, 61syl21anc 825 . . . . . . . 8 (((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6362ex 405 . . . . . . 7 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6438, 63ralrimi 3160 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))
6538, 19, 4xrralrecnnle 41029 . . . . . 6 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑥𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))))
6664, 65mpbird 249 . . . . 5 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥𝐵)
672, 5, 19, 33, 66eliocd 41160 . . . 4 ((𝜑𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,]𝐵))
6867ralrimiva 3126 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵))
69 dfss3 3843 . . 3 ( 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵) ↔ ∀𝑥 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵))
7068, 69sylibr 226 . 2 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵))
711xrleidd 12355 . . . . . 6 (𝜑𝐴𝐴)
7271adantr 473 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴𝐴)
73 1rp 12201 . . . . . . . . 9 1 ∈ ℝ+
7473a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → 1 ∈ ℝ+)
75 nnrp 12210 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7674, 75rpdivcld 12258 . . . . . . 7 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
7776adantl 474 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ+)
7849, 77ltaddrpd 12274 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛)))
79 iocssioo 12636 . . . . 5 (((𝐴 ∈ ℝ* ∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*) ∧ (𝐴𝐴𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8054, 56, 72, 78, 79syl22anc 826 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8180ralrimiva 3126 . . 3 (𝜑 → ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
82 ssiin 4839 . . 3 ((𝐴(,]𝐵) ⊆ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛))))
8381, 82sylibr 226 . 2 (𝜑 → (𝐴(,]𝐵) ⊆ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))))
8470, 83eqssd 3871 1 (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  wne 2961  wral 3082  wrex 3083  wss 3825   ciin 4787   class class class wbr 4923  (class class class)co 6970  cr 10326  0cc0 10327  1c1 10328   + caddc 10330  *cxr 10465   < clt 10466  cle 10467   / cdiv 11090  cn 11431  +crp 12197  (,)cioo 12547  (,]cioc 12548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-sup 8693  df-inf 8694  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-n0 11701  df-z 11787  df-uz 12052  df-q 12156  df-rp 12198  df-ioo 12551  df-ioc 12552  df-fl 12970
This theorem is referenced by:  iocborel  42016
  Copyright terms: Public domain W3C validator