Step | Hyp | Ref
| Expression |
1 | | iooiinioc.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 ∈
ℝ*) |
3 | | iooiinioc.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
4 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈ ℝ) |
5 | 4 | rexrd 11034 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐵 ∈
ℝ*) |
6 | | 1nn 11993 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
7 | | ioossre 13149 |
. . . . . . . . . 10
⊢ (𝐴(,)(𝐵 + (1 / 1))) ⊆
ℝ |
8 | | oveq2 7292 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → (1 / 𝑛) = (1 / 1)) |
9 | 8 | oveq2d 7300 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (𝐵 + (1 / 𝑛)) = (𝐵 + (1 / 1))) |
10 | 9 | oveq2d 7300 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,)(𝐵 + (1 / 1)))) |
11 | 10 | sseq1d 3953 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ ↔ (𝐴(,)(𝐵 + (1 / 1))) ⊆
ℝ)) |
12 | 11 | rspcev 3562 |
. . . . . . . . . 10
⊢ ((1
∈ ℕ ∧ (𝐴(,)(𝐵 + (1 / 1))) ⊆ ℝ) →
∃𝑛 ∈ ℕ
(𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ) |
13 | 6, 7, 12 | mp2an 689 |
. . . . . . . . 9
⊢
∃𝑛 ∈
ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ |
14 | | iinss 4987 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ) |
15 | 13, 14 | ax-mp 5 |
. . . . . . . 8
⊢ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ ℝ) |
17 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
18 | 16, 17 | sseldd 3923 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ) |
19 | 18 | rexrd 11034 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ ℝ*) |
20 | | 1red 10985 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
21 | | ax-1ne0 10949 |
. . . . . . . . . . 11
⊢ 1 ≠
0 |
22 | 21 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ≠ 0) |
23 | 20, 20, 22 | redivcld 11812 |
. . . . . . . . 9
⊢ (𝜑 → (1 / 1) ∈
ℝ) |
24 | 3, 23 | readdcld 11013 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 + (1 / 1)) ∈ ℝ) |
25 | 24 | rexrd 11034 |
. . . . . . 7
⊢ (𝜑 → (𝐵 + (1 / 1)) ∈
ℝ*) |
26 | 25 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝐵 + (1 / 1)) ∈
ℝ*) |
27 | | id 22 |
. . . . . . . 8
⊢ (𝑥 ∈ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
28 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝑥 ∈ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 1 ∈ ℕ) |
29 | 10 | eleq2d 2825 |
. . . . . . . 8
⊢ (𝑛 = 1 → (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1))))) |
30 | 27, 28, 29 | eliind 42626 |
. . . . . . 7
⊢ (𝑥 ∈ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))) |
31 | 30 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 1)))) |
32 | | ioogtlb 43040 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ (𝐵 + (1 / 1)) ∈
ℝ* ∧ 𝑥
∈ (𝐴(,)(𝐵 + (1 / 1)))) → 𝐴 < 𝑥) |
33 | 2, 26, 31, 32 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝐴 < 𝑥) |
34 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑛𝜑 |
35 | | nfcv 2908 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝑥 |
36 | | nfii1 4960 |
. . . . . . . . 9
⊢
Ⅎ𝑛∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) |
37 | 35, 36 | nfel 2922 |
. . . . . . . 8
⊢
Ⅎ𝑛 𝑥 ∈ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) |
38 | 34, 37 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑛(𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
39 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝜑) |
40 | | iinss2 4988 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
41 | 40 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
42 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
43 | 41, 42 | sseldd 3923 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
44 | 43 | adantll 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
45 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
46 | | elioore 13118 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) → 𝑥 ∈ ℝ) |
47 | 46 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ) |
48 | 47 | adantll 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ) |
49 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 ∈ ℝ) |
50 | | nnrecre 12024 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ) |
51 | 50 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ) |
52 | 49, 51 | readdcld 11013 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ) |
53 | 52 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈ ℝ) |
54 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈
ℝ*) |
55 | 54 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈
ℝ*) |
56 | 52 | rexrd 11034 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
57 | 56 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → (𝐵 + (1 / 𝑛)) ∈
ℝ*) |
58 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
59 | | iooltub 43055 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*
∧ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 < (𝐵 + (1 / 𝑛))) |
60 | 55, 57, 58, 59 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 < (𝐵 + (1 / 𝑛))) |
61 | 48, 53, 60 | ltled 11132 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛))) |
62 | 39, 44, 45, 61 | syl21anc 835 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) ∧ 𝑛 ∈ ℕ) → 𝑥 ≤ (𝐵 + (1 / 𝑛))) |
63 | 62 | ex 413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑛 ∈ ℕ → 𝑥 ≤ (𝐵 + (1 / 𝑛)))) |
64 | 38, 63 | ralrimi 3142 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛))) |
65 | 38, 19, 4 | xrralrecnnle 42929 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → (𝑥 ≤ 𝐵 ↔ ∀𝑛 ∈ ℕ 𝑥 ≤ (𝐵 + (1 / 𝑛)))) |
66 | 64, 65 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ≤ 𝐵) |
67 | 2, 5, 19, 33, 66 | eliocd 43052 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) → 𝑥 ∈ (𝐴(,]𝐵)) |
68 | 67 | ralrimiva 3104 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵)) |
69 | | dfss3 3910 |
. . 3
⊢ (∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵) ↔ ∀𝑥 ∈ ∩
𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))𝑥 ∈ (𝐴(,]𝐵)) |
70 | 68, 69 | sylibr 233 |
. 2
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ⊆ (𝐴(,]𝐵)) |
71 | 1 | xrleidd 12895 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≤ 𝐴) |
72 | 71 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ≤ 𝐴) |
73 | | 1rp 12743 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
74 | 73 | a1i 11 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 1 ∈
ℝ+) |
75 | | nnrp 12750 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
76 | 74, 75 | rpdivcld 12798 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → (1 /
𝑛) ∈
ℝ+) |
77 | 76 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈
ℝ+) |
78 | 49, 77 | ltaddrpd 12814 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐵 < (𝐵 + (1 / 𝑛))) |
79 | | iocssioo 13180 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ (𝐵 + (1 / 𝑛)) ∈ ℝ*)
∧ (𝐴 ≤ 𝐴 ∧ 𝐵 < (𝐵 + (1 / 𝑛)))) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
80 | 54, 56, 72, 78, 79 | syl22anc 836 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
81 | 80 | ralrimiva 3104 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
82 | | ssiin 4986 |
. . 3
⊢ ((𝐴(,]𝐵) ⊆ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) ↔ ∀𝑛 ∈ ℕ (𝐴(,]𝐵) ⊆ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
83 | 81, 82 | sylibr 233 |
. 2
⊢ (𝜑 → (𝐴(,]𝐵) ⊆ ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛)))) |
84 | 70, 83 | eqssd 3939 |
1
⊢ (𝜑 → ∩ 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵)) |