Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem3 Structured version   Visualization version   GIF version

Theorem smflimlem3 46694
Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem3.z 𝑍 = (ℤ𝑀)
smflimlem3.s (𝜑𝑆 ∈ SAlg)
smflimlem3.m ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
smflimlem3.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem3.a (𝜑𝐴 ∈ ℝ)
smflimlem3.p 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem3.h 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem3.i 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem3.c ((𝜑𝑦 ∈ ran 𝑃) → (𝐶𝑦) ∈ 𝑦)
smflimlem3.x (𝜑𝑋 ∈ (𝐷𝐼))
smflimlem3.k (𝜑𝐾 ∈ ℕ)
smflimlem3.y (𝜑𝑌 ∈ ℝ+)
smflimlem3.l (𝜑 → (1 / 𝐾) < 𝑌)
Assertion
Ref Expression
smflimlem3 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌)))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑠,𝑥   𝐶,𝑘,𝑚,𝑠   𝑦,𝐶   𝑖,𝐹,𝑘,𝑚,𝑛,𝑥   𝐹,𝑠,𝑖   𝑖,𝐻,𝑘,𝑚,𝑛   𝑖,𝐾,𝑘,𝑚,𝑠,𝑥   𝑦,𝐾,𝑖   𝑚,𝑀   𝑃,𝑘,𝑚,𝑠   𝑦,𝑃   𝑆,𝑘,𝑚,𝑠   𝑖,𝑋,𝑘,𝑚,𝑥   𝑖,𝑍,𝑘,𝑚,𝑛,𝑥   𝜑,𝑖,𝑘,𝑚   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑠)   𝐴(𝑦,𝑖,𝑛)   𝐶(𝑥,𝑖,𝑛)   𝐷(𝑥,𝑦,𝑖,𝑘,𝑚,𝑛,𝑠)   𝑃(𝑥,𝑖,𝑛)   𝑆(𝑥,𝑦,𝑖,𝑛)   𝐹(𝑦)   𝐻(𝑥,𝑦,𝑠)   𝐼(𝑥,𝑦,𝑖,𝑘,𝑚,𝑛,𝑠)   𝐾(𝑛)   𝑀(𝑥,𝑦,𝑖,𝑘,𝑛,𝑠)   𝑋(𝑦,𝑛,𝑠)   𝑌(𝑥,𝑦,𝑖,𝑘,𝑚,𝑛,𝑠)   𝑍(𝑦,𝑠)

Proof of Theorem smflimlem3
StepHypRef Expression
1 smflimlem3.d . . . . . . . . 9 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
2 ssrab2 4103 . . . . . . . . 9 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
31, 2eqsstri 4043 . . . . . . . 8 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
4 inss1 4258 . . . . . . . . 9 (𝐷𝐼) ⊆ 𝐷
5 smflimlem3.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷𝐼))
64, 5sselid 4006 . . . . . . . 8 (𝜑𝑋𝐷)
73, 6sselid 4006 . . . . . . 7 (𝜑𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
8 fveq2 6920 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝐹𝑖) = (𝐹𝑚))
98dmeqd 5930 . . . . . . . . . . . 12 (𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚))
10 eqcom 2747 . . . . . . . . . . . . . 14 (𝑖 = 𝑚𝑚 = 𝑖)
1110imbi1i 349 . . . . . . . . . . . . 13 ((𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹𝑖) = dom (𝐹𝑚)))
12 eqcom 2747 . . . . . . . . . . . . . 14 (dom (𝐹𝑖) = dom (𝐹𝑚) ↔ dom (𝐹𝑚) = dom (𝐹𝑖))
1312imbi2i 336 . . . . . . . . . . . . 13 ((𝑚 = 𝑖 → dom (𝐹𝑖) = dom (𝐹𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖)))
1411, 13bitri 275 . . . . . . . . . . . 12 ((𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖)))
159, 14mpbi 230 . . . . . . . . . . 11 (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖))
1615cbviinv 5064 . . . . . . . . . 10 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖 ∈ (ℤ𝑛)dom (𝐹𝑖)
1716a1i 11 . . . . . . . . 9 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖 ∈ (ℤ𝑛)dom (𝐹𝑖))
1817iuneq2i 5036 . . . . . . . 8 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑖 ∈ (ℤ𝑛)dom (𝐹𝑖)
19 fveq2 6920 . . . . . . . . . 10 (𝑛 = 𝑚 → (ℤ𝑛) = (ℤ𝑚))
2019iineq1d 44992 . . . . . . . . 9 (𝑛 = 𝑚 𝑖 ∈ (ℤ𝑛)dom (𝐹𝑖) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
2120cbviunv 5063 . . . . . . . 8 𝑛𝑍 𝑖 ∈ (ℤ𝑛)dom (𝐹𝑖) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
2218, 21eqtri 2768 . . . . . . 7 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
237, 22eleqtrdi 2854 . . . . . 6 (𝜑𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
24 smflimlem3.z . . . . . . . 8 𝑍 = (ℤ𝑀)
25 eqid 2740 . . . . . . . 8 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
2624, 25allbutfi 45308 . . . . . . 7 (𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ↔ ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ dom (𝐹𝑖))
2726biimpi 216 . . . . . 6 (𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ dom (𝐹𝑖))
2823, 27syl 17 . . . . 5 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ dom (𝐹𝑖))
295elin2d 4228 . . . . . . . 8 (𝜑𝑋𝐼)
30 smflimlem3.i . . . . . . . . 9 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
31 oveq1 7455 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (𝑚𝐻𝑘) = (𝑖𝐻𝑘))
3231cbviinv 5064 . . . . . . . . . . . . . 14 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑖 ∈ (ℤ𝑛)(𝑖𝐻𝑘)
3332a1i 11 . . . . . . . . . . . . 13 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑖 ∈ (ℤ𝑛)(𝑖𝐻𝑘))
3433iuneq2i 5036 . . . . . . . . . . . 12 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖𝐻𝑘)
3519iineq1d 44992 . . . . . . . . . . . . 13 (𝑛 = 𝑚 𝑖 ∈ (ℤ𝑛)(𝑖𝐻𝑘) = 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘))
3635cbviunv 5063 . . . . . . . . . . . 12 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖𝐻𝑘) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘)
3734, 36eqtri 2768 . . . . . . . . . . 11 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘)
3837a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘))
3938iineq2i 5037 . . . . . . . . 9 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑘 ∈ ℕ 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘)
4030, 39eqtri 2768 . . . . . . . 8 𝐼 = 𝑘 ∈ ℕ 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘)
4129, 40eleqtrdi 2854 . . . . . . 7 (𝜑𝑋 𝑘 ∈ ℕ 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘))
42 smflimlem3.k . . . . . . 7 (𝜑𝐾 ∈ ℕ)
43 oveq2 7456 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑖𝐻𝑘) = (𝑖𝐻𝐾))
4443adantr 480 . . . . . . . . . 10 ((𝑘 = 𝐾𝑖 ∈ (ℤ𝑚)) → (𝑖𝐻𝑘) = (𝑖𝐻𝐾))
4544iineq2dv 5040 . . . . . . . . 9 (𝑘 = 𝐾 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘) = 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾))
4645iuneq2d 5045 . . . . . . . 8 (𝑘 = 𝐾 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾))
4746eleq2d 2830 . . . . . . 7 (𝑘 = 𝐾 → (𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘) ↔ 𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾)))
4841, 42, 47eliind 44973 . . . . . 6 (𝜑𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾))
49 eqid 2740 . . . . . . 7 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾)
5024, 49allbutfi 45308 . . . . . 6 (𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾) ↔ ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ (𝑖𝐻𝐾))
5148, 50sylib 218 . . . . 5 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ (𝑖𝐻𝐾))
5228, 51jca 511 . . . 4 (𝜑 → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ dom (𝐹𝑖) ∧ ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ (𝑖𝐻𝐾)))
5324rexanuz2 15398 . . . 4 (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) ↔ (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ dom (𝐹𝑖) ∧ ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ (𝑖𝐻𝐾)))
5452, 53sylibr 234 . . 3 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)))
55 simpll 766 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → 𝜑)
56 simpr 484 . . . . . . 7 ((𝜑𝑚𝑍) → 𝑚𝑍)
5724uztrn2 12922 . . . . . . 7 ((𝑚𝑍𝑖 ∈ (ℤ𝑚)) → 𝑖𝑍)
5856, 57sylan 579 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → 𝑖𝑍)
59 simprl 770 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ dom (𝐹𝑖))
60 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝑖𝐻𝐾))
61 smflimlem3.h . . . . . . . . . . . . . . . . . 18 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
6261a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))))
63 oveq12 7457 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝑖𝑘 = 𝐾) → (𝑚𝑃𝑘) = (𝑖𝑃𝐾))
6463fveq2d 6924 . . . . . . . . . . . . . . . . . 18 ((𝑚 = 𝑖𝑘 = 𝐾) → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑖𝑃𝐾)))
6564adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝑍) ∧ (𝑚 = 𝑖𝑘 = 𝐾)) → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑖𝑃𝐾)))
66 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝑖𝑍)
6742adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝐾 ∈ ℕ)
68 fvexd 6935 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ V)
6962, 65, 66, 67, 68ovmpod 7602 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → (𝑖𝐻𝐾) = (𝐶‘(𝑖𝑃𝐾)))
70693adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑋 ∈ (𝑖𝐻𝐾)) → (𝑖𝐻𝐾) = (𝐶‘(𝑖𝑃𝐾)))
7160, 70eleqtrd 2846 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾)))
72713expa 1118 . . . . . . . . . . . . 13 (((𝜑𝑖𝑍) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾)))
7372adantrl 715 . . . . . . . . . . . 12 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾)))
7473, 59elind 4223 . . . . . . . . . . 11 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖)))
75 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
76 smflimlem3.s . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑆 ∈ SAlg)
7775, 76rabexd 5358 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
7877ralrimivw 3156 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
7978a1d 25 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑚𝑍 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V))
8079imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
8180ralrimiva 3152 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
82 smflimlem3.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
8382fnmpo 8110 . . . . . . . . . . . . . . . . . . . 20 (∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V → 𝑃 Fn (𝑍 × ℕ))
8481, 83syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 Fn (𝑍 × ℕ))
8584adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → 𝑃 Fn (𝑍 × ℕ))
86 fnovrn 7625 . . . . . . . . . . . . . . . . . 18 ((𝑃 Fn (𝑍 × ℕ) ∧ 𝑖𝑍𝐾 ∈ ℕ) → (𝑖𝑃𝐾) ∈ ran 𝑃)
8785, 66, 67, 86syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → (𝑖𝑃𝐾) ∈ ran 𝑃)
88 ovex 7481 . . . . . . . . . . . . . . . . . 18 (𝑖𝑃𝐾) ∈ V
89 eleq1 2832 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑖𝑃𝐾) → (𝑦 ∈ ran 𝑃 ↔ (𝑖𝑃𝐾) ∈ ran 𝑃))
9089anbi2d 629 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑖𝑃𝐾) → ((𝜑𝑦 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃)))
91 fveq2 6920 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑖𝑃𝐾) → (𝐶𝑦) = (𝐶‘(𝑖𝑃𝐾)))
92 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑖𝑃𝐾) → 𝑦 = (𝑖𝑃𝐾))
9391, 92eleq12d 2838 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑖𝑃𝐾) → ((𝐶𝑦) ∈ 𝑦 ↔ (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾)))
9490, 93imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑖𝑃𝐾) → (((𝜑𝑦 ∈ ran 𝑃) → (𝐶𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))))
95 smflimlem3.c . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ran 𝑃) → (𝐶𝑦) ∈ 𝑦)
9688, 94, 95vtocl 3570 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))
9787, 96syldan 590 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))
9882a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
9915adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 = 𝑖𝑘 = 𝐾) → dom (𝐹𝑚) = dom (𝐹𝑖))
1008fveq1d 6922 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥))
10110imbi1i 349 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥)))
102 eqcom 2747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥) ↔ ((𝐹𝑚)‘𝑥) = ((𝐹𝑖)‘𝑥))
103102imbi2i 336 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 = 𝑖 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑖)‘𝑥)))
104101, 103bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑖)‘𝑥)))
105100, 104mpbi 230 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑖 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑖)‘𝑥))
106105adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = 𝑖𝑘 = 𝐾) → ((𝐹𝑚)‘𝑥) = ((𝐹𝑖)‘𝑥))
107 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝐾 → (1 / 𝑘) = (1 / 𝐾))
108107oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝐾 → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝐾)))
109108adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = 𝑖𝑘 = 𝐾) → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝐾)))
110106, 109breq12d 5179 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 = 𝑖𝑘 = 𝐾) → (((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))))
11199, 110rabeqbidv 3462 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑖𝑘 = 𝐾) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))})
11215ineq2d 4241 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑖 → (𝑠 ∩ dom (𝐹𝑚)) = (𝑠 ∩ dom (𝐹𝑖)))
113112adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑖𝑘 = 𝐾) → (𝑠 ∩ dom (𝐹𝑚)) = (𝑠 ∩ dom (𝐹𝑖)))
114111, 113eqeq12d 2756 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝑖𝑘 = 𝐾) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))))
115114rabbidv 3451 . . . . . . . . . . . . . . . . . 18 ((𝑚 = 𝑖𝑘 = 𝐾) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))})
116115adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝑍) ∧ (𝑚 = 𝑖𝑘 = 𝐾)) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))})
117 eqid 2740 . . . . . . . . . . . . . . . . . . 19 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))}
118117, 76rabexd 5358 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))} ∈ V)
119118adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))} ∈ V)
12098, 116, 66, 67, 119ovmpod 7602 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → (𝑖𝑃𝐾) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))})
12197, 120eleqtrd 2846 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))})
122 ineq1 4234 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐶‘(𝑖𝑃𝐾)) → (𝑠 ∩ dom (𝐹𝑖)) = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖)))
123122eqeq2d 2751 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐶‘(𝑖𝑃𝐾)) → ({𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖)) ↔ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖))))
124123elrab 3708 . . . . . . . . . . . . . . 15 ((𝐶‘(𝑖𝑃𝐾)) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))} ↔ ((𝐶‘(𝑖𝑃𝐾)) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖))))
125121, 124sylib 218 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → ((𝐶‘(𝑖𝑃𝐾)) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖))))
126125simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖)))
127126eqcomd 2746 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖)) = {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))})
128127adantr 480 . . . . . . . . . . 11 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖)) = {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))})
12974, 128eleqtrd 2846 . . . . . . . . . 10 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))})
130 fveq2 6920 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑖)‘𝑋))
131 eqidd 2741 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐴 + (1 / 𝐾)) = (𝐴 + (1 / 𝐾)))
132130, 131breq12d 5179 . . . . . . . . . . 11 (𝑥 = 𝑋 → (((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾)) ↔ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))
133132elrab 3708 . . . . . . . . . 10 (𝑋 ∈ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} ↔ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))
134129, 133sylib 218 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))
135134simprd 495 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))
13659, 135jca 511 . . . . . . 7 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))
137136ex 412 . . . . . 6 ((𝜑𝑖𝑍) → ((𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))))
13855, 58, 137syl2anc 583 . . . . 5 (((𝜑𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))))
139138ralimdva 3173 . . . 4 ((𝜑𝑚𝑍) → (∀𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → ∀𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))))
140139reximdva 3174 . . 3 (𝜑 → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))))
14154, 140mpd 15 . 2 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))
142 simprl 770 . . . . . . 7 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → 𝑋 ∈ dom (𝐹𝑖))
143 eleq1 2832 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚𝑍𝑖𝑍))
144143anbi2d 629 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝜑𝑚𝑍) ↔ (𝜑𝑖𝑍)))
145 fveq2 6920 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
146145, 15feq12d 6735 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑖):dom (𝐹𝑖)⟶ℝ))
147144, 146imbi12d 344 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)))
14876adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
149 smflimlem3.m . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
150 eqid 2740 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
151148, 149, 150smff 46653 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
152147, 151chvarvv 1998 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
153152adantr 480 . . . . . . . . . 10 (((𝜑𝑖𝑍) ∧ 𝑋 ∈ dom (𝐹𝑖)) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
154 simpr 484 . . . . . . . . . 10 (((𝜑𝑖𝑍) ∧ 𝑋 ∈ dom (𝐹𝑖)) → 𝑋 ∈ dom (𝐹𝑖))
155153, 154ffvelcdmd 7119 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑋 ∈ dom (𝐹𝑖)) → ((𝐹𝑖)‘𝑋) ∈ ℝ)
156155adantrr 716 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹𝑖)‘𝑋) ∈ ℝ)
157 smflimlem3.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
15842nnrecred 12344 . . . . . . . . . 10 (𝜑 → (1 / 𝐾) ∈ ℝ)
159157, 158readdcld 11319 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 𝐾)) ∈ ℝ)
160159ad2antrr 725 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + (1 / 𝐾)) ∈ ℝ)
161 smflimlem3.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
162161rpred 13099 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
163157, 162readdcld 11319 . . . . . . . . 9 (𝜑 → (𝐴 + 𝑌) ∈ ℝ)
164163ad2antrr 725 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + 𝑌) ∈ ℝ)
165 simprr 772 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))
166 smflimlem3.l . . . . . . . . . 10 (𝜑 → (1 / 𝐾) < 𝑌)
167158, 162, 157, 166ltadd2dd 11449 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 𝐾)) < (𝐴 + 𝑌))
168167ad2antrr 725 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + (1 / 𝐾)) < (𝐴 + 𝑌))
169156, 160, 164, 165, 168lttrd 11451 . . . . . . 7 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌))
170142, 169jca 511 . . . . . 6 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌)))
171170ex 412 . . . . 5 ((𝜑𝑖𝑍) → ((𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌))))
17255, 58, 171syl2anc 583 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌))))
173172ralimdva 3173 . . 3 ((𝜑𝑚𝑍) → (∀𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → ∀𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌))))
174173reximdva 3174 . 2 (𝜑 → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌))))
175141, 174mpd 15 1 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975   ciun 5015   ciin 5016   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  cr 11183  1c1 11185   + caddc 11187   < clt 11324   / cdiv 11947  cn 12293  cuz 12903  +crp 13057  cli 15530  SAlgcsalg 46229  SMblFncsmblfn 46616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-z 12640  df-uz 12904  df-rp 13058  df-ioo 13411  df-ico 13413  df-smblfn 46617
This theorem is referenced by:  smflimlem4  46695
  Copyright terms: Public domain W3C validator