Proof of Theorem smflimlem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | smflimlem3.d | . . . . . . . . 9
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | 
| 2 |  | ssrab2 4079 | . . . . . . . . 9
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) | 
| 3 | 1, 2 | eqsstri 4029 | . . . . . . . 8
⊢ 𝐷 ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) | 
| 4 |  | inss1 4236 | . . . . . . . . 9
⊢ (𝐷 ∩ 𝐼) ⊆ 𝐷 | 
| 5 |  | smflimlem3.x | . . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝐷 ∩ 𝐼)) | 
| 6 | 4, 5 | sselid 3980 | . . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐷) | 
| 7 | 3, 6 | sselid 3980 | . . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) | 
| 8 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑖 = 𝑚 → (𝐹‘𝑖) = (𝐹‘𝑚)) | 
| 9 | 8 | dmeqd 5915 | . . . . . . . . . . . 12
⊢ (𝑖 = 𝑚 → dom (𝐹‘𝑖) = dom (𝐹‘𝑚)) | 
| 10 |  | eqcom 2743 | . . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑚 ↔ 𝑚 = 𝑖) | 
| 11 | 10 | imbi1i 349 | . . . . . . . . . . . . 13
⊢ ((𝑖 = 𝑚 → dom (𝐹‘𝑖) = dom (𝐹‘𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹‘𝑖) = dom (𝐹‘𝑚))) | 
| 12 |  | eqcom 2743 | . . . . . . . . . . . . . 14
⊢ (dom
(𝐹‘𝑖) = dom (𝐹‘𝑚) ↔ dom (𝐹‘𝑚) = dom (𝐹‘𝑖)) | 
| 13 | 12 | imbi2i 336 | . . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑖 → dom (𝐹‘𝑖) = dom (𝐹‘𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹‘𝑚) = dom (𝐹‘𝑖))) | 
| 14 | 11, 13 | bitri 275 | . . . . . . . . . . . 12
⊢ ((𝑖 = 𝑚 → dom (𝐹‘𝑖) = dom (𝐹‘𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹‘𝑚) = dom (𝐹‘𝑖))) | 
| 15 | 9, 14 | mpbi 230 | . . . . . . . . . . 11
⊢ (𝑚 = 𝑖 → dom (𝐹‘𝑚) = dom (𝐹‘𝑖)) | 
| 16 | 15 | cbviinv 5040 | . . . . . . . . . 10
⊢ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑖 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑖) | 
| 17 | 16 | a1i 11 | . . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑖 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑖)) | 
| 18 | 17 | iuneq2i 5012 | . . . . . . . 8
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑖) | 
| 19 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑚)) | 
| 20 | 19 | iineq1d 45100 | . . . . . . . . 9
⊢ (𝑛 = 𝑚 → ∩
𝑖 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑖) = ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖)) | 
| 21 | 20 | cbviunv 5039 | . . . . . . . 8
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑖) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) | 
| 22 | 18, 21 | eqtri 2764 | . . . . . . 7
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) | 
| 23 | 7, 22 | eleqtrdi 2850 | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖)) | 
| 24 |  | smflimlem3.z | . . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 25 |  | eqid 2736 | . . . . . . . 8
⊢ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) | 
| 26 | 24, 25 | allbutfi 45409 | . . . . . . 7
⊢ (𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) ↔ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ dom (𝐹‘𝑖)) | 
| 27 | 26 | biimpi 216 | . . . . . 6
⊢ (𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ dom (𝐹‘𝑖)) | 
| 28 | 23, 27 | syl 17 | . . . . 5
⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ dom (𝐹‘𝑖)) | 
| 29 | 5 | elin2d 4204 | . . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐼) | 
| 30 |  | smflimlem3.i | . . . . . . . . 9
⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) | 
| 31 |  | oveq1 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑖 → (𝑚𝐻𝑘) = (𝑖𝐻𝑘)) | 
| 32 | 31 | cbviinv 5040 | . . . . . . . . . . . . . 14
⊢ ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖𝐻𝑘) | 
| 33 | 32 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝑍 → ∩
𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖𝐻𝑘)) | 
| 34 | 33 | iuneq2i 5012 | . . . . . . . . . . . 12
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖𝐻𝑘) | 
| 35 | 19 | iineq1d 45100 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ∩
𝑖 ∈
(ℤ≥‘𝑛)(𝑖𝐻𝑘) = ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘)) | 
| 36 | 35 | cbviunv 5039 | . . . . . . . . . . . 12
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖𝐻𝑘) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) | 
| 37 | 34, 36 | eqtri 2764 | . . . . . . . . . . 11
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) | 
| 38 | 37 | a1i 11 | . . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘)) | 
| 39 | 38 | iineq2i 5013 | . . . . . . . . 9
⊢ ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∩ 𝑘 ∈ ℕ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) | 
| 40 | 30, 39 | eqtri 2764 | . . . . . . . 8
⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) | 
| 41 | 29, 40 | eleqtrdi 2850 | . . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ∩
𝑘 ∈ ℕ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘)) | 
| 42 |  | smflimlem3.k | . . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℕ) | 
| 43 |  | oveq2 7440 | . . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (𝑖𝐻𝑘) = (𝑖𝐻𝐾)) | 
| 44 | 43 | adantr 480 | . . . . . . . . . 10
⊢ ((𝑘 = 𝐾 ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → (𝑖𝐻𝑘) = (𝑖𝐻𝐾)) | 
| 45 | 44 | iineq2dv 5016 | . . . . . . . . 9
⊢ (𝑘 = 𝐾 → ∩
𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) = ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾)) | 
| 46 | 45 | iuneq2d 5021 | . . . . . . . 8
⊢ (𝑘 = 𝐾 → ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾)) | 
| 47 | 46 | eleq2d 2826 | . . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑋 ∈ ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) ↔ 𝑋 ∈ ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾))) | 
| 48 | 41, 42, 47 | eliind 45081 | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾)) | 
| 49 |  | eqid 2736 | . . . . . . 7
⊢ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾) = ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾) | 
| 50 | 24, 49 | allbutfi 45409 | . . . . . 6
⊢ (𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾) ↔ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ (𝑖𝐻𝐾)) | 
| 51 | 48, 50 | sylib 218 | . . . . 5
⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ (𝑖𝐻𝐾)) | 
| 52 | 28, 51 | jca 511 | . . . 4
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ dom (𝐹‘𝑖) ∧ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ (𝑖𝐻𝐾))) | 
| 53 | 24 | rexanuz2 15389 | . . . 4
⊢
(∃𝑚 ∈
𝑍 ∀𝑖 ∈
(ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) ↔ (∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ dom (𝐹‘𝑖) ∧ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ (𝑖𝐻𝐾))) | 
| 54 | 52, 53 | sylibr 234 | . . 3
⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) | 
| 55 |  | simpll 766 | . . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → 𝜑) | 
| 56 |  | simpr 484 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) | 
| 57 | 24 | uztrn2 12898 | . . . . . . 7
⊢ ((𝑚 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → 𝑖 ∈ 𝑍) | 
| 58 | 56, 57 | sylan 580 | . . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → 𝑖 ∈ 𝑍) | 
| 59 |  | simprl 770 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ dom (𝐹‘𝑖)) | 
| 60 |  | simp3 1138 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝑖𝐻𝐾)) | 
| 61 |  | smflimlem3.h | . . . . . . . . . . . . . . . . . 18
⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) | 
| 62 | 61 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))) | 
| 63 |  | oveq12 7441 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → (𝑚𝑃𝑘) = (𝑖𝑃𝐾)) | 
| 64 | 63 | fveq2d 6909 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑖𝑃𝐾))) | 
| 65 | 64 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑚 = 𝑖 ∧ 𝑘 = 𝐾)) → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑖𝑃𝐾))) | 
| 66 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ 𝑍) | 
| 67 | 42 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝐾 ∈ ℕ) | 
| 68 |  | fvexd 6920 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ V) | 
| 69 | 62, 65, 66, 67, 68 | ovmpod 7586 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑖𝐻𝐾) = (𝐶‘(𝑖𝑃𝐾))) | 
| 70 | 69 | 3adant3 1132 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → (𝑖𝐻𝐾) = (𝐶‘(𝑖𝑃𝐾))) | 
| 71 | 60, 70 | eleqtrd 2842 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾))) | 
| 72 | 71 | 3expa 1118 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾))) | 
| 73 | 72 | adantrl 716 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾))) | 
| 74 | 73, 59 | elind 4199 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖))) | 
| 75 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} | 
| 76 |  | smflimlem3.s | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑆 ∈ SAlg) | 
| 77 | 75, 76 | rabexd 5339 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) | 
| 78 | 77 | ralrimivw 3149 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) | 
| 79 | 78 | a1d 25 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑚 ∈ 𝑍 → ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V)) | 
| 80 | 79 | imp 406 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) | 
| 81 | 80 | ralrimiva 3145 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∀𝑚 ∈ 𝑍 ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) | 
| 82 |  | smflimlem3.p | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) | 
| 83 | 82 | fnmpo 8095 | . . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑚 ∈
𝑍 ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V → 𝑃 Fn (𝑍 × ℕ)) | 
| 84 | 81, 83 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 Fn (𝑍 × ℕ)) | 
| 85 | 84 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑃 Fn (𝑍 × ℕ)) | 
| 86 |  | fnovrn 7609 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 Fn (𝑍 × ℕ) ∧ 𝑖 ∈ 𝑍 ∧ 𝐾 ∈ ℕ) → (𝑖𝑃𝐾) ∈ ran 𝑃) | 
| 87 | 85, 66, 67, 86 | syl3anc 1372 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑖𝑃𝐾) ∈ ran 𝑃) | 
| 88 |  | ovex 7465 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑖𝑃𝐾) ∈ V | 
| 89 |  | eleq1 2828 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑖𝑃𝐾) → (𝑦 ∈ ran 𝑃 ↔ (𝑖𝑃𝐾) ∈ ran 𝑃)) | 
| 90 | 89 | anbi2d 630 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑖𝑃𝐾) → ((𝜑 ∧ 𝑦 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃))) | 
| 91 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑖𝑃𝐾) → (𝐶‘𝑦) = (𝐶‘(𝑖𝑃𝐾))) | 
| 92 |  | id 22 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑖𝑃𝐾) → 𝑦 = (𝑖𝑃𝐾)) | 
| 93 | 91, 92 | eleq12d 2834 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑖𝑃𝐾) → ((𝐶‘𝑦) ∈ 𝑦 ↔ (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))) | 
| 94 | 90, 93 | imbi12d 344 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑖𝑃𝐾) → (((𝜑 ∧ 𝑦 ∈ ran 𝑃) → (𝐶‘𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾)))) | 
| 95 |  | smflimlem3.c | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑃) → (𝐶‘𝑦) ∈ 𝑦) | 
| 96 | 88, 94, 95 | vtocl 3557 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾)) | 
| 97 | 87, 96 | syldan 591 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾)) | 
| 98 | 82 | a1i 11 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))})) | 
| 99 | 15 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → dom (𝐹‘𝑚) = dom (𝐹‘𝑖)) | 
| 100 | 8 | fveq1d 6907 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑚 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥)) | 
| 101 | 10 | imbi1i 349 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 = 𝑚 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥))) | 
| 102 |  | eqcom 2743 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥) ↔ ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑖)‘𝑥)) | 
| 103 | 102 | imbi2i 336 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 = 𝑖 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑖)‘𝑥))) | 
| 104 | 101, 103 | bitri 275 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 = 𝑚 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑖)‘𝑥))) | 
| 105 | 100, 104 | mpbi 230 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑖 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑖)‘𝑥)) | 
| 106 | 105 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑖)‘𝑥)) | 
| 107 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝐾 → (1 / 𝑘) = (1 / 𝐾)) | 
| 108 | 107 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝐾 → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝐾))) | 
| 109 | 108 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝐾))) | 
| 110 | 106, 109 | breq12d 5155 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → (((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾)))) | 
| 111 | 99, 110 | rabeqbidv 3454 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))}) | 
| 112 | 15 | ineq2d 4219 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑖 → (𝑠 ∩ dom (𝐹‘𝑚)) = (𝑠 ∩ dom (𝐹‘𝑖))) | 
| 113 | 112 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → (𝑠 ∩ dom (𝐹‘𝑚)) = (𝑠 ∩ dom (𝐹‘𝑖))) | 
| 114 | 111, 113 | eqeq12d 2752 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → ({𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚)) ↔ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖)))) | 
| 115 | 114 | rabbidv 3443 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))}) | 
| 116 | 115 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑚 = 𝑖 ∧ 𝑘 = 𝐾)) → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))}) | 
| 117 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . 19
⊢ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))} = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))} | 
| 118 | 117, 76 | rabexd 5339 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))} ∈ V) | 
| 119 | 118 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))} ∈ V) | 
| 120 | 98, 116, 66, 67, 119 | ovmpod 7586 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑖𝑃𝐾) = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))}) | 
| 121 | 97, 120 | eleqtrd 2842 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))}) | 
| 122 |  | ineq1 4212 | . . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝐶‘(𝑖𝑃𝐾)) → (𝑠 ∩ dom (𝐹‘𝑖)) = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖))) | 
| 123 | 122 | eqeq2d 2747 | . . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝐶‘(𝑖𝑃𝐾)) → ({𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖)) ↔ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖)))) | 
| 124 | 123 | elrab 3691 | . . . . . . . . . . . . . . 15
⊢ ((𝐶‘(𝑖𝑃𝐾)) ∈ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))} ↔ ((𝐶‘(𝑖𝑃𝐾)) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖)))) | 
| 125 | 121, 124 | sylib 218 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝐶‘(𝑖𝑃𝐾)) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖)))) | 
| 126 | 125 | simprd 495 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖))) | 
| 127 | 126 | eqcomd 2742 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖)) = {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))}) | 
| 128 | 127 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖)) = {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))}) | 
| 129 | 74, 128 | eleqtrd 2842 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))}) | 
| 130 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑖)‘𝑋)) | 
| 131 |  | eqidd 2737 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝐴 + (1 / 𝐾)) = (𝐴 + (1 / 𝐾))) | 
| 132 | 130, 131 | breq12d 5155 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾)) ↔ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) | 
| 133 | 132 | elrab 3691 | . . . . . . . . . 10
⊢ (𝑋 ∈ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} ↔ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) | 
| 134 | 129, 133 | sylib 218 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) | 
| 135 | 134 | simprd 495 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) | 
| 136 | 59, 135 | jca 511 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) | 
| 137 | 136 | ex 412 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))) | 
| 138 | 55, 58, 137 | syl2anc 584 | . . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → ((𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))) | 
| 139 | 138 | ralimdva 3166 | . . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))) | 
| 140 | 139 | reximdva 3167 | . . 3
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))) | 
| 141 | 54, 140 | mpd 15 | . 2
⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) | 
| 142 |  | simprl 770 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → 𝑋 ∈ dom (𝐹‘𝑖)) | 
| 143 |  | eleq1 2828 | . . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑖 → (𝑚 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) | 
| 144 | 143 | anbi2d 630 | . . . . . . . . . . . . 13
⊢ (𝑚 = 𝑖 → ((𝜑 ∧ 𝑚 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) | 
| 145 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑖 → (𝐹‘𝑚) = (𝐹‘𝑖)) | 
| 146 | 145, 15 | feq12d 6723 | . . . . . . . . . . . . 13
⊢ (𝑚 = 𝑖 → ((𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ ↔ (𝐹‘𝑖):dom (𝐹‘𝑖)⟶ℝ)) | 
| 147 | 144, 146 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑚 = 𝑖 → (((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐹‘𝑖):dom (𝐹‘𝑖)⟶ℝ))) | 
| 148 | 76 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑆 ∈ SAlg) | 
| 149 |  | smflimlem3.m | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) | 
| 150 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ dom
(𝐹‘𝑚) = dom (𝐹‘𝑚) | 
| 151 | 148, 149,
150 | smff 46752 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) | 
| 152 | 147, 151 | chvarvv 1997 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐹‘𝑖):dom (𝐹‘𝑖)⟶ℝ) | 
| 153 | 152 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑖)) → (𝐹‘𝑖):dom (𝐹‘𝑖)⟶ℝ) | 
| 154 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑖)) → 𝑋 ∈ dom (𝐹‘𝑖)) | 
| 155 | 153, 154 | ffvelcdmd 7104 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑖)) → ((𝐹‘𝑖)‘𝑋) ∈ ℝ) | 
| 156 | 155 | adantrr 717 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹‘𝑖)‘𝑋) ∈ ℝ) | 
| 157 |  | smflimlem3.a | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 158 | 42 | nnrecred 12318 | . . . . . . . . . 10
⊢ (𝜑 → (1 / 𝐾) ∈ ℝ) | 
| 159 | 157, 158 | readdcld 11291 | . . . . . . . . 9
⊢ (𝜑 → (𝐴 + (1 / 𝐾)) ∈ ℝ) | 
| 160 | 159 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + (1 / 𝐾)) ∈ ℝ) | 
| 161 |  | smflimlem3.y | . . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈
ℝ+) | 
| 162 | 161 | rpred 13078 | . . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ ℝ) | 
| 163 | 157, 162 | readdcld 11291 | . . . . . . . . 9
⊢ (𝜑 → (𝐴 + 𝑌) ∈ ℝ) | 
| 164 | 163 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + 𝑌) ∈ ℝ) | 
| 165 |  | simprr 772 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) | 
| 166 |  | smflimlem3.l | . . . . . . . . . 10
⊢ (𝜑 → (1 / 𝐾) < 𝑌) | 
| 167 | 158, 162,
157, 166 | ltadd2dd 11421 | . . . . . . . . 9
⊢ (𝜑 → (𝐴 + (1 / 𝐾)) < (𝐴 + 𝑌)) | 
| 168 | 167 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + (1 / 𝐾)) < (𝐴 + 𝑌)) | 
| 169 | 156, 160,
164, 165, 168 | lttrd 11423 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌)) | 
| 170 | 142, 169 | jca 511 | . . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌))) | 
| 171 | 170 | ex 412 | . . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌)))) | 
| 172 | 55, 58, 171 | syl2anc 584 | . . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → ((𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌)))) | 
| 173 | 172 | ralimdva 3166 | . . 3
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌)))) | 
| 174 | 173 | reximdva 3167 | . 2
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌)))) | 
| 175 | 141, 174 | mpd 15 | 1
⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌))) |