Proof of Theorem smflimlem3
Step | Hyp | Ref
| Expression |
1 | | smflimlem3.d |
. . . . . . . . 9
⊢ 𝐷 = {𝑥 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
2 | | ssrab2 4009 |
. . . . . . . . 9
⊢ {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
3 | 1, 2 | eqsstri 3951 |
. . . . . . . 8
⊢ 𝐷 ⊆ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) |
4 | | inss1 4159 |
. . . . . . . . 9
⊢ (𝐷 ∩ 𝐼) ⊆ 𝐷 |
5 | | smflimlem3.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝐷 ∩ 𝐼)) |
6 | 4, 5 | sselid 3915 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
7 | 3, 6 | sselid 3915 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ∪
𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚)) |
8 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑚 → (𝐹‘𝑖) = (𝐹‘𝑚)) |
9 | 8 | dmeqd 5803 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑚 → dom (𝐹‘𝑖) = dom (𝐹‘𝑚)) |
10 | | eqcom 2745 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑚 ↔ 𝑚 = 𝑖) |
11 | 10 | imbi1i 349 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = 𝑚 → dom (𝐹‘𝑖) = dom (𝐹‘𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹‘𝑖) = dom (𝐹‘𝑚))) |
12 | | eqcom 2745 |
. . . . . . . . . . . . . 14
⊢ (dom
(𝐹‘𝑖) = dom (𝐹‘𝑚) ↔ dom (𝐹‘𝑚) = dom (𝐹‘𝑖)) |
13 | 12 | imbi2i 335 |
. . . . . . . . . . . . 13
⊢ ((𝑚 = 𝑖 → dom (𝐹‘𝑖) = dom (𝐹‘𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹‘𝑚) = dom (𝐹‘𝑖))) |
14 | 11, 13 | bitri 274 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 𝑚 → dom (𝐹‘𝑖) = dom (𝐹‘𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹‘𝑚) = dom (𝐹‘𝑖))) |
15 | 9, 14 | mpbi 229 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑖 → dom (𝐹‘𝑚) = dom (𝐹‘𝑖)) |
16 | 15 | cbviinv 4967 |
. . . . . . . . . 10
⊢ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑖 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑖) |
17 | 16 | a1i 11 |
. . . . . . . . 9
⊢ (𝑛 ∈ 𝑍 → ∩
𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∩ 𝑖 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑖)) |
18 | 17 | iuneq2i 4942 |
. . . . . . . 8
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑖) |
19 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (ℤ≥‘𝑛) =
(ℤ≥‘𝑚)) |
20 | 19 | iineq1d 42529 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → ∩
𝑖 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑖) = ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖)) |
21 | 20 | cbviunv 4966 |
. . . . . . . 8
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑖) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) |
22 | 18, 21 | eqtri 2766 |
. . . . . . 7
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)dom (𝐹‘𝑚) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) |
23 | 7, 22 | eleqtrdi 2849 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖)) |
24 | | smflimlem3.z |
. . . . . . . 8
⊢ 𝑍 =
(ℤ≥‘𝑀) |
25 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) |
26 | 24, 25 | allbutfi 42823 |
. . . . . . 7
⊢ (𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) ↔ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ dom (𝐹‘𝑖)) |
27 | 26 | biimpi 215 |
. . . . . 6
⊢ (𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)dom (𝐹‘𝑖) → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ dom (𝐹‘𝑖)) |
28 | 23, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ dom (𝐹‘𝑖)) |
29 | 5 | elin2d 4129 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
30 | | smflimlem3.i |
. . . . . . . . 9
⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) |
31 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑖 → (𝑚𝐻𝑘) = (𝑖𝐻𝑘)) |
32 | 31 | cbviinv 4967 |
. . . . . . . . . . . . . 14
⊢ ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖𝐻𝑘) |
33 | 32 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝑍 → ∩
𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖𝐻𝑘)) |
34 | 33 | iuneq2i 4942 |
. . . . . . . . . . . 12
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖𝐻𝑘) |
35 | 19 | iineq1d 42529 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ∩
𝑖 ∈
(ℤ≥‘𝑛)(𝑖𝐻𝑘) = ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘)) |
36 | 35 | cbviunv 4966 |
. . . . . . . . . . . 12
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑛)(𝑖𝐻𝑘) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) |
37 | 34, 36 | eqtri 2766 |
. . . . . . . . . . 11
⊢ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) |
38 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘)) |
39 | 38 | iineq2i 4943 |
. . . . . . . . 9
⊢ ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈
(ℤ≥‘𝑛)(𝑚𝐻𝑘) = ∩ 𝑘 ∈ ℕ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) |
40 | 30, 39 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) |
41 | 29, 40 | eleqtrdi 2849 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ∩
𝑘 ∈ ℕ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘)) |
42 | | smflimlem3.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℕ) |
43 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝐾 → (𝑖𝐻𝑘) = (𝑖𝐻𝐾)) |
44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑘 = 𝐾 ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → (𝑖𝐻𝑘) = (𝑖𝐻𝐾)) |
45 | 44 | iineq2dv 4946 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → ∩
𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) = ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾)) |
46 | 45 | iuneq2d 4950 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) = ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾)) |
47 | 46 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (𝑋 ∈ ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝑘) ↔ 𝑋 ∈ ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾))) |
48 | 41, 42, 47 | eliind 42508 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾)) |
49 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾) = ∪
𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾) |
50 | 24, 49 | allbutfi 42823 |
. . . . . 6
⊢ (𝑋 ∈ ∪ 𝑚 ∈ 𝑍 ∩ 𝑖 ∈
(ℤ≥‘𝑚)(𝑖𝐻𝐾) ↔ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ (𝑖𝐻𝐾)) |
51 | 48, 50 | sylib 217 |
. . . . 5
⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ (𝑖𝐻𝐾)) |
52 | 28, 51 | jca 511 |
. . . 4
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ dom (𝐹‘𝑖) ∧ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ (𝑖𝐻𝐾))) |
53 | 24 | rexanuz2 14989 |
. . . 4
⊢
(∃𝑚 ∈
𝑍 ∀𝑖 ∈
(ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) ↔ (∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ dom (𝐹‘𝑖) ∧ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)𝑋 ∈ (𝑖𝐻𝐾))) |
54 | 52, 53 | sylibr 233 |
. . 3
⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) |
55 | | simpll 763 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → 𝜑) |
56 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) |
57 | 24 | uztrn2 12530 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → 𝑖 ∈ 𝑍) |
58 | 56, 57 | sylan 579 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → 𝑖 ∈ 𝑍) |
59 | | simprl 767 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ dom (𝐹‘𝑖)) |
60 | | simp3 1136 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝑖𝐻𝐾)) |
61 | | smflimlem3.h |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) |
62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))) |
63 | | oveq12 7264 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → (𝑚𝑃𝑘) = (𝑖𝑃𝐾)) |
64 | 63 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑖𝑃𝐾))) |
65 | 64 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑚 = 𝑖 ∧ 𝑘 = 𝐾)) → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑖𝑃𝐾))) |
66 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ 𝑍) |
67 | 42 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝐾 ∈ ℕ) |
68 | | fvexd 6771 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ V) |
69 | 62, 65, 66, 67, 68 | ovmpod 7403 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑖𝐻𝐾) = (𝐶‘(𝑖𝑃𝐾))) |
70 | 69 | 3adant3 1130 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → (𝑖𝐻𝐾) = (𝐶‘(𝑖𝑃𝐾))) |
71 | 60, 70 | eleqtrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾))) |
72 | 71 | 3expa 1116 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾))) |
73 | 72 | adantrl 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾))) |
74 | 73, 59 | elind 4124 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖))) |
75 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} |
76 | | smflimlem3.s |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑆 ∈ SAlg) |
77 | 75, 76 | rabexd 5252 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
78 | 77 | ralrimivw 3108 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
79 | 78 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑚 ∈ 𝑍 → ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V)) |
80 | 79 | imp 406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
81 | 80 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∀𝑚 ∈ 𝑍 ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V) |
82 | | smflimlem3.p |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) |
83 | 82 | fnmpo 7882 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑚 ∈
𝑍 ∀𝑘 ∈ ℕ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} ∈ V → 𝑃 Fn (𝑍 × ℕ)) |
84 | 81, 83 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑃 Fn (𝑍 × ℕ)) |
85 | 84 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑃 Fn (𝑍 × ℕ)) |
86 | | fnovrn 7425 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 Fn (𝑍 × ℕ) ∧ 𝑖 ∈ 𝑍 ∧ 𝐾 ∈ ℕ) → (𝑖𝑃𝐾) ∈ ran 𝑃) |
87 | 85, 66, 67, 86 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑖𝑃𝐾) ∈ ran 𝑃) |
88 | | ovex 7288 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖𝑃𝐾) ∈ V |
89 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑖𝑃𝐾) → (𝑦 ∈ ran 𝑃 ↔ (𝑖𝑃𝐾) ∈ ran 𝑃)) |
90 | 89 | anbi2d 628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑖𝑃𝐾) → ((𝜑 ∧ 𝑦 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃))) |
91 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑖𝑃𝐾) → (𝐶‘𝑦) = (𝐶‘(𝑖𝑃𝐾))) |
92 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑖𝑃𝐾) → 𝑦 = (𝑖𝑃𝐾)) |
93 | 91, 92 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑖𝑃𝐾) → ((𝐶‘𝑦) ∈ 𝑦 ↔ (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))) |
94 | 90, 93 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑖𝑃𝐾) → (((𝜑 ∧ 𝑦 ∈ ran 𝑃) → (𝐶‘𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾)))) |
95 | | smflimlem3.c |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑃) → (𝐶‘𝑦) ∈ 𝑦) |
96 | 88, 94, 95 | vtocl 3488 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾)) |
97 | 87, 96 | syldan 590 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾)) |
98 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))})) |
99 | 15 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → dom (𝐹‘𝑚) = dom (𝐹‘𝑖)) |
100 | 8 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑖 = 𝑚 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥)) |
101 | 10 | imbi1i 349 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑖 = 𝑚 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥))) |
102 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥) ↔ ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑖)‘𝑥)) |
103 | 102 | imbi2i 335 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑚 = 𝑖 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑖)‘𝑥))) |
104 | 101, 103 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑖 = 𝑚 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑖)‘𝑥))) |
105 | 100, 104 | mpbi 229 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 = 𝑖 → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑖)‘𝑥)) |
106 | 105 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → ((𝐹‘𝑚)‘𝑥) = ((𝐹‘𝑖)‘𝑥)) |
107 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝐾 → (1 / 𝑘) = (1 / 𝐾)) |
108 | 107 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝐾 → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝐾))) |
109 | 108 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝐾))) |
110 | 106, 109 | breq12d 5083 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → (((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾)))) |
111 | 99, 110 | rabeqbidv 3410 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))}) |
112 | 15 | ineq2d 4143 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 = 𝑖 → (𝑠 ∩ dom (𝐹‘𝑚)) = (𝑠 ∩ dom (𝐹‘𝑖))) |
113 | 112 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → (𝑠 ∩ dom (𝐹‘𝑚)) = (𝑠 ∩ dom (𝐹‘𝑖))) |
114 | 111, 113 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → ({𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚)) ↔ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖)))) |
115 | 114 | rabbidv 3404 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝑖 ∧ 𝑘 = 𝐾) → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))}) |
116 | 115 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑚 = 𝑖 ∧ 𝑘 = 𝐾)) → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))} = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))}) |
117 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))} = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))} |
118 | 117, 76 | rabexd 5252 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))} ∈ V) |
119 | 118 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))} ∈ V) |
120 | 98, 116, 66, 67, 119 | ovmpod 7403 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑖𝑃𝐾) = {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))}) |
121 | 97, 120 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))}) |
122 | | ineq1 4136 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 = (𝐶‘(𝑖𝑃𝐾)) → (𝑠 ∩ dom (𝐹‘𝑖)) = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖))) |
123 | 122 | eqeq2d 2749 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = (𝐶‘(𝑖𝑃𝐾)) → ({𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖)) ↔ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖)))) |
124 | 123 | elrab 3617 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶‘(𝑖𝑃𝐾)) ∈ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹‘𝑖))} ↔ ((𝐶‘(𝑖𝑃𝐾)) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖)))) |
125 | 121, 124 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝐶‘(𝑖𝑃𝐾)) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖)))) |
126 | 125 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖))) |
127 | 126 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖)) = {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))}) |
128 | 127 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹‘𝑖)) = {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))}) |
129 | 74, 128 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))}) |
130 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑖)‘𝑥) = ((𝐹‘𝑖)‘𝑋)) |
131 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝐴 + (1 / 𝐾)) = (𝐴 + (1 / 𝐾))) |
132 | 130, 131 | breq12d 5083 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾)) ↔ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) |
133 | 132 | elrab 3617 |
. . . . . . . . . 10
⊢ (𝑋 ∈ {𝑥 ∈ dom (𝐹‘𝑖) ∣ ((𝐹‘𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} ↔ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) |
134 | 129, 133 | sylib 217 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) |
135 | 134 | simprd 495 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) |
136 | 59, 135 | jca 511 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) |
137 | 136 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))) |
138 | 55, 58, 137 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → ((𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))) |
139 | 138 | ralimdva 3102 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))) |
140 | 139 | reximdva 3202 |
. . 3
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))) |
141 | 54, 140 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) |
142 | | simprl 767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → 𝑋 ∈ dom (𝐹‘𝑖)) |
143 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑖 → (𝑚 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍)) |
144 | 143 | anbi2d 628 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑖 → ((𝜑 ∧ 𝑚 ∈ 𝑍) ↔ (𝜑 ∧ 𝑖 ∈ 𝑍))) |
145 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑖 → (𝐹‘𝑚) = (𝐹‘𝑖)) |
146 | 145, 15 | feq12d 6572 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑖 → ((𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ ↔ (𝐹‘𝑖):dom (𝐹‘𝑖)⟶ℝ)) |
147 | 144, 146 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑖 → (((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) ↔ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐹‘𝑖):dom (𝐹‘𝑖)⟶ℝ))) |
148 | 76 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑆 ∈ SAlg) |
149 | | smflimlem3.m |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚) ∈ (SMblFn‘𝑆)) |
150 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ dom
(𝐹‘𝑚) = dom (𝐹‘𝑚) |
151 | 148, 149,
150 | smff 44155 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝐹‘𝑚):dom (𝐹‘𝑚)⟶ℝ) |
152 | 147, 151 | chvarvv 2003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝐹‘𝑖):dom (𝐹‘𝑖)⟶ℝ) |
153 | 152 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑖)) → (𝐹‘𝑖):dom (𝐹‘𝑖)⟶ℝ) |
154 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑖)) → 𝑋 ∈ dom (𝐹‘𝑖)) |
155 | 153, 154 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ dom (𝐹‘𝑖)) → ((𝐹‘𝑖)‘𝑋) ∈ ℝ) |
156 | 155 | adantrr 713 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹‘𝑖)‘𝑋) ∈ ℝ) |
157 | | smflimlem3.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
158 | 42 | nnrecred 11954 |
. . . . . . . . . 10
⊢ (𝜑 → (1 / 𝐾) ∈ ℝ) |
159 | 157, 158 | readdcld 10935 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 + (1 / 𝐾)) ∈ ℝ) |
160 | 159 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + (1 / 𝐾)) ∈ ℝ) |
161 | | smflimlem3.y |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈
ℝ+) |
162 | 161 | rpred 12701 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ ℝ) |
163 | 157, 162 | readdcld 10935 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 + 𝑌) ∈ ℝ) |
164 | 163 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + 𝑌) ∈ ℝ) |
165 | | simprr 769 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) |
166 | | smflimlem3.l |
. . . . . . . . . 10
⊢ (𝜑 → (1 / 𝐾) < 𝑌) |
167 | 158, 162,
157, 166 | ltadd2dd 11064 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 + (1 / 𝐾)) < (𝐴 + 𝑌)) |
168 | 167 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + (1 / 𝐾)) < (𝐴 + 𝑌)) |
169 | 156, 160,
164, 165, 168 | lttrd 11066 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌)) |
170 | 142, 169 | jca 511 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌))) |
171 | 170 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌)))) |
172 | 55, 58, 171 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑍) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → ((𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → (𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌)))) |
173 | 172 | ralimdva 3102 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌)))) |
174 | 173 | reximdva 3202 |
. 2
⊢ (𝜑 → (∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌)))) |
175 | 141, 174 | mpd 15 |
1
⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)(𝑋 ∈ dom (𝐹‘𝑖) ∧ ((𝐹‘𝑖)‘𝑋) < (𝐴 + 𝑌))) |