Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem3 Structured version   Visualization version   GIF version

Theorem smflimlem3 45788
Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem3.z 𝑍 = (β„€β‰₯β€˜π‘€)
smflimlem3.s (πœ‘ β†’ 𝑆 ∈ SAlg)
smflimlem3.m ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (πΉβ€˜π‘š) ∈ (SMblFnβ€˜π‘†))
smflimlem3.d 𝐷 = {π‘₯ ∈ βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ (π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) ∈ dom ⇝ }
smflimlem3.a (πœ‘ β†’ 𝐴 ∈ ℝ)
smflimlem3.p 𝑃 = (π‘š ∈ 𝑍, π‘˜ ∈ β„• ↦ {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))})
smflimlem3.h 𝐻 = (π‘š ∈ 𝑍, π‘˜ ∈ β„• ↦ (πΆβ€˜(π‘šπ‘ƒπ‘˜)))
smflimlem3.i 𝐼 = ∩ π‘˜ ∈ β„• βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)(π‘šπ»π‘˜)
smflimlem3.c ((πœ‘ ∧ 𝑦 ∈ ran 𝑃) β†’ (πΆβ€˜π‘¦) ∈ 𝑦)
smflimlem3.x (πœ‘ β†’ 𝑋 ∈ (𝐷 ∩ 𝐼))
smflimlem3.k (πœ‘ β†’ 𝐾 ∈ β„•)
smflimlem3.y (πœ‘ β†’ π‘Œ ∈ ℝ+)
smflimlem3.l (πœ‘ β†’ (1 / 𝐾) < π‘Œ)
Assertion
Ref Expression
smflimlem3 (πœ‘ β†’ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + π‘Œ)))
Distinct variable groups:   𝐴,π‘˜,π‘š,𝑠,π‘₯   𝐢,π‘˜,π‘š,𝑠   𝑦,𝐢   𝑖,𝐹,π‘˜,π‘š,𝑛,π‘₯   𝐹,𝑠,𝑖   𝑖,𝐻,π‘˜,π‘š,𝑛   𝑖,𝐾,π‘˜,π‘š,𝑠,π‘₯   𝑦,𝐾,𝑖   π‘š,𝑀   𝑃,π‘˜,π‘š,𝑠   𝑦,𝑃   𝑆,π‘˜,π‘š,𝑠   𝑖,𝑋,π‘˜,π‘š,π‘₯   𝑖,𝑍,π‘˜,π‘š,𝑛,π‘₯   πœ‘,𝑖,π‘˜,π‘š   πœ‘,𝑦
Allowed substitution hints:   πœ‘(π‘₯,𝑛,𝑠)   𝐴(𝑦,𝑖,𝑛)   𝐢(π‘₯,𝑖,𝑛)   𝐷(π‘₯,𝑦,𝑖,π‘˜,π‘š,𝑛,𝑠)   𝑃(π‘₯,𝑖,𝑛)   𝑆(π‘₯,𝑦,𝑖,𝑛)   𝐹(𝑦)   𝐻(π‘₯,𝑦,𝑠)   𝐼(π‘₯,𝑦,𝑖,π‘˜,π‘š,𝑛,𝑠)   𝐾(𝑛)   𝑀(π‘₯,𝑦,𝑖,π‘˜,𝑛,𝑠)   𝑋(𝑦,𝑛,𝑠)   π‘Œ(π‘₯,𝑦,𝑖,π‘˜,π‘š,𝑛,𝑠)   𝑍(𝑦,𝑠)

Proof of Theorem smflimlem3
StepHypRef Expression
1 smflimlem3.d . . . . . . . . 9 𝐷 = {π‘₯ ∈ βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ (π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) ∈ dom ⇝ }
2 ssrab2 4077 . . . . . . . . 9 {π‘₯ ∈ βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) ∣ (π‘š ∈ 𝑍 ↦ ((πΉβ€˜π‘š)β€˜π‘₯)) ∈ dom ⇝ } βŠ† βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š)
31, 2eqsstri 4016 . . . . . . . 8 𝐷 βŠ† βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š)
4 inss1 4228 . . . . . . . . 9 (𝐷 ∩ 𝐼) βŠ† 𝐷
5 smflimlem3.x . . . . . . . . 9 (πœ‘ β†’ 𝑋 ∈ (𝐷 ∩ 𝐼))
64, 5sselid 3980 . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ 𝐷)
73, 6sselid 3980 . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š))
8 fveq2 6891 . . . . . . . . . . . . 13 (𝑖 = π‘š β†’ (πΉβ€˜π‘–) = (πΉβ€˜π‘š))
98dmeqd 5905 . . . . . . . . . . . 12 (𝑖 = π‘š β†’ dom (πΉβ€˜π‘–) = dom (πΉβ€˜π‘š))
10 eqcom 2738 . . . . . . . . . . . . . 14 (𝑖 = π‘š ↔ π‘š = 𝑖)
1110imbi1i 349 . . . . . . . . . . . . 13 ((𝑖 = π‘š β†’ dom (πΉβ€˜π‘–) = dom (πΉβ€˜π‘š)) ↔ (π‘š = 𝑖 β†’ dom (πΉβ€˜π‘–) = dom (πΉβ€˜π‘š)))
12 eqcom 2738 . . . . . . . . . . . . . 14 (dom (πΉβ€˜π‘–) = dom (πΉβ€˜π‘š) ↔ dom (πΉβ€˜π‘š) = dom (πΉβ€˜π‘–))
1312imbi2i 336 . . . . . . . . . . . . 13 ((π‘š = 𝑖 β†’ dom (πΉβ€˜π‘–) = dom (πΉβ€˜π‘š)) ↔ (π‘š = 𝑖 β†’ dom (πΉβ€˜π‘š) = dom (πΉβ€˜π‘–)))
1411, 13bitri 275 . . . . . . . . . . . 12 ((𝑖 = π‘š β†’ dom (πΉβ€˜π‘–) = dom (πΉβ€˜π‘š)) ↔ (π‘š = 𝑖 β†’ dom (πΉβ€˜π‘š) = dom (πΉβ€˜π‘–)))
159, 14mpbi 229 . . . . . . . . . . 11 (π‘š = 𝑖 β†’ dom (πΉβ€˜π‘š) = dom (πΉβ€˜π‘–))
1615cbviinv 5044 . . . . . . . . . 10 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) = ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘–)
1716a1i 11 . . . . . . . . 9 (𝑛 ∈ 𝑍 β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) = ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘–))
1817iuneq2i 5018 . . . . . . . 8 βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) = βˆͺ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘–)
19 fveq2 6891 . . . . . . . . . 10 (𝑛 = π‘š β†’ (β„€β‰₯β€˜π‘›) = (β„€β‰₯β€˜π‘š))
2019iineq1d 44081 . . . . . . . . 9 (𝑛 = π‘š β†’ ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘–) = ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)dom (πΉβ€˜π‘–))
2120cbviunv 5043 . . . . . . . 8 βˆͺ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘–) = βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)dom (πΉβ€˜π‘–)
2218, 21eqtri 2759 . . . . . . 7 βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)dom (πΉβ€˜π‘š) = βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)dom (πΉβ€˜π‘–)
237, 22eleqtrdi 2842 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)dom (πΉβ€˜π‘–))
24 smflimlem3.z . . . . . . . 8 𝑍 = (β„€β‰₯β€˜π‘€)
25 eqid 2731 . . . . . . . 8 βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)dom (πΉβ€˜π‘–) = βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)dom (πΉβ€˜π‘–)
2624, 25allbutfi 44402 . . . . . . 7 (𝑋 ∈ βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)dom (πΉβ€˜π‘–) ↔ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)𝑋 ∈ dom (πΉβ€˜π‘–))
2726biimpi 215 . . . . . 6 (𝑋 ∈ βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)dom (πΉβ€˜π‘–) β†’ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)𝑋 ∈ dom (πΉβ€˜π‘–))
2823, 27syl 17 . . . . 5 (πœ‘ β†’ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)𝑋 ∈ dom (πΉβ€˜π‘–))
295elin2d 4199 . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ 𝐼)
30 smflimlem3.i . . . . . . . . 9 𝐼 = ∩ π‘˜ ∈ β„• βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)(π‘šπ»π‘˜)
31 oveq1 7419 . . . . . . . . . . . . . . 15 (π‘š = 𝑖 β†’ (π‘šπ»π‘˜) = (π‘–π»π‘˜))
3231cbviinv 5044 . . . . . . . . . . . . . 14 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)(π‘šπ»π‘˜) = ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘›)(π‘–π»π‘˜)
3332a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ 𝑍 β†’ ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)(π‘šπ»π‘˜) = ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘›)(π‘–π»π‘˜))
3433iuneq2i 5018 . . . . . . . . . . . 12 βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)(π‘šπ»π‘˜) = βˆͺ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘›)(π‘–π»π‘˜)
3519iineq1d 44081 . . . . . . . . . . . . 13 (𝑛 = π‘š β†’ ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘›)(π‘–π»π‘˜) = ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(π‘–π»π‘˜))
3635cbviunv 5043 . . . . . . . . . . . 12 βˆͺ 𝑛 ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘›)(π‘–π»π‘˜) = βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(π‘–π»π‘˜)
3734, 36eqtri 2759 . . . . . . . . . . 11 βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)(π‘šπ»π‘˜) = βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(π‘–π»π‘˜)
3837a1i 11 . . . . . . . . . 10 (π‘˜ ∈ β„• β†’ βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)(π‘šπ»π‘˜) = βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(π‘–π»π‘˜))
3938iineq2i 5019 . . . . . . . . 9 ∩ π‘˜ ∈ β„• βˆͺ 𝑛 ∈ 𝑍 ∩ π‘š ∈ (β„€β‰₯β€˜π‘›)(π‘šπ»π‘˜) = ∩ π‘˜ ∈ β„• βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(π‘–π»π‘˜)
4030, 39eqtri 2759 . . . . . . . 8 𝐼 = ∩ π‘˜ ∈ β„• βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(π‘–π»π‘˜)
4129, 40eleqtrdi 2842 . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ ∩ π‘˜ ∈ β„• βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(π‘–π»π‘˜))
42 smflimlem3.k . . . . . . 7 (πœ‘ β†’ 𝐾 ∈ β„•)
43 oveq2 7420 . . . . . . . . . . 11 (π‘˜ = 𝐾 β†’ (π‘–π»π‘˜) = (𝑖𝐻𝐾))
4443adantr 480 . . . . . . . . . 10 ((π‘˜ = 𝐾 ∧ 𝑖 ∈ (β„€β‰₯β€˜π‘š)) β†’ (π‘–π»π‘˜) = (𝑖𝐻𝐾))
4544iineq2dv 5022 . . . . . . . . 9 (π‘˜ = 𝐾 β†’ ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(π‘–π»π‘˜) = ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(𝑖𝐻𝐾))
4645iuneq2d 5026 . . . . . . . 8 (π‘˜ = 𝐾 β†’ βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(π‘–π»π‘˜) = βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(𝑖𝐻𝐾))
4746eleq2d 2818 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑋 ∈ βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(π‘–π»π‘˜) ↔ 𝑋 ∈ βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(𝑖𝐻𝐾)))
4841, 42, 47eliind 44060 . . . . . 6 (πœ‘ β†’ 𝑋 ∈ βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(𝑖𝐻𝐾))
49 eqid 2731 . . . . . . 7 βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(𝑖𝐻𝐾) = βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(𝑖𝐻𝐾)
5024, 49allbutfi 44402 . . . . . 6 (𝑋 ∈ βˆͺ π‘š ∈ 𝑍 ∩ 𝑖 ∈ (β„€β‰₯β€˜π‘š)(𝑖𝐻𝐾) ↔ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)𝑋 ∈ (𝑖𝐻𝐾))
5148, 50sylib 217 . . . . 5 (πœ‘ β†’ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)𝑋 ∈ (𝑖𝐻𝐾))
5228, 51jca 511 . . . 4 (πœ‘ β†’ (βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)𝑋 ∈ dom (πΉβ€˜π‘–) ∧ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)𝑋 ∈ (𝑖𝐻𝐾)))
5324rexanuz2 15301 . . . 4 (βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) ↔ (βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)𝑋 ∈ dom (πΉβ€˜π‘–) ∧ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)𝑋 ∈ (𝑖𝐻𝐾)))
5452, 53sylibr 233 . . 3 (πœ‘ β†’ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾)))
55 simpll 764 . . . . . 6 (((πœ‘ ∧ π‘š ∈ 𝑍) ∧ 𝑖 ∈ (β„€β‰₯β€˜π‘š)) β†’ πœ‘)
56 simpr 484 . . . . . . 7 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ π‘š ∈ 𝑍)
5724uztrn2 12846 . . . . . . 7 ((π‘š ∈ 𝑍 ∧ 𝑖 ∈ (β„€β‰₯β€˜π‘š)) β†’ 𝑖 ∈ 𝑍)
5856, 57sylan 579 . . . . . 6 (((πœ‘ ∧ π‘š ∈ 𝑍) ∧ 𝑖 ∈ (β„€β‰₯β€˜π‘š)) β†’ 𝑖 ∈ 𝑍)
59 simprl 768 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) β†’ 𝑋 ∈ dom (πΉβ€˜π‘–))
60 simp3 1137 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ (𝑖𝐻𝐾)) β†’ 𝑋 ∈ (𝑖𝐻𝐾))
61 smflimlem3.h . . . . . . . . . . . . . . . . . 18 𝐻 = (π‘š ∈ 𝑍, π‘˜ ∈ β„• ↦ (πΆβ€˜(π‘šπ‘ƒπ‘˜)))
6261a1i 11 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ 𝐻 = (π‘š ∈ 𝑍, π‘˜ ∈ β„• ↦ (πΆβ€˜(π‘šπ‘ƒπ‘˜))))
63 oveq12 7421 . . . . . . . . . . . . . . . . . . 19 ((π‘š = 𝑖 ∧ π‘˜ = 𝐾) β†’ (π‘šπ‘ƒπ‘˜) = (𝑖𝑃𝐾))
6463fveq2d 6895 . . . . . . . . . . . . . . . . . 18 ((π‘š = 𝑖 ∧ π‘˜ = 𝐾) β†’ (πΆβ€˜(π‘šπ‘ƒπ‘˜)) = (πΆβ€˜(𝑖𝑃𝐾)))
6564adantl 481 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (π‘š = 𝑖 ∧ π‘˜ = 𝐾)) β†’ (πΆβ€˜(π‘šπ‘ƒπ‘˜)) = (πΆβ€˜(𝑖𝑃𝐾)))
66 simpr 484 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ 𝑖 ∈ 𝑍)
6742adantr 480 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ 𝐾 ∈ β„•)
68 fvexd 6906 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (πΆβ€˜(𝑖𝑃𝐾)) ∈ V)
6962, 65, 66, 67, 68ovmpod 7563 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (𝑖𝐻𝐾) = (πΆβ€˜(𝑖𝑃𝐾)))
70693adant3 1131 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ (𝑖𝐻𝐾)) β†’ (𝑖𝐻𝐾) = (πΆβ€˜(𝑖𝑃𝐾)))
7160, 70eleqtrd 2834 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑖 ∈ 𝑍 ∧ 𝑋 ∈ (𝑖𝐻𝐾)) β†’ 𝑋 ∈ (πΆβ€˜(𝑖𝑃𝐾)))
72713expa 1117 . . . . . . . . . . . . 13 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) β†’ 𝑋 ∈ (πΆβ€˜(𝑖𝑃𝐾)))
7372adantrl 713 . . . . . . . . . . . 12 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) β†’ 𝑋 ∈ (πΆβ€˜(𝑖𝑃𝐾)))
7473, 59elind 4194 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) β†’ 𝑋 ∈ ((πΆβ€˜(𝑖𝑃𝐾)) ∩ dom (πΉβ€˜π‘–)))
75 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))} = {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))}
76 smflimlem3.s . . . . . . . . . . . . . . . . . . . . . . . . 25 (πœ‘ β†’ 𝑆 ∈ SAlg)
7775, 76rabexd 5333 . . . . . . . . . . . . . . . . . . . . . . . 24 (πœ‘ β†’ {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))} ∈ V)
7877ralrimivw 3149 . . . . . . . . . . . . . . . . . . . . . . 23 (πœ‘ β†’ βˆ€π‘˜ ∈ β„• {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))} ∈ V)
7978a1d 25 . . . . . . . . . . . . . . . . . . . . . 22 (πœ‘ β†’ (π‘š ∈ 𝑍 β†’ βˆ€π‘˜ ∈ β„• {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))} ∈ V))
8079imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ βˆ€π‘˜ ∈ β„• {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))} ∈ V)
8180ralrimiva 3145 . . . . . . . . . . . . . . . . . . . 20 (πœ‘ β†’ βˆ€π‘š ∈ 𝑍 βˆ€π‘˜ ∈ β„• {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))} ∈ V)
82 smflimlem3.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (π‘š ∈ 𝑍, π‘˜ ∈ β„• ↦ {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))})
8382fnmpo 8059 . . . . . . . . . . . . . . . . . . . 20 (βˆ€π‘š ∈ 𝑍 βˆ€π‘˜ ∈ β„• {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))} ∈ V β†’ 𝑃 Fn (𝑍 Γ— β„•))
8481, 83syl 17 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ 𝑃 Fn (𝑍 Γ— β„•))
8584adantr 480 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ 𝑃 Fn (𝑍 Γ— β„•))
86 fnovrn 7586 . . . . . . . . . . . . . . . . . 18 ((𝑃 Fn (𝑍 Γ— β„•) ∧ 𝑖 ∈ 𝑍 ∧ 𝐾 ∈ β„•) β†’ (𝑖𝑃𝐾) ∈ ran 𝑃)
8785, 66, 67, 86syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (𝑖𝑃𝐾) ∈ ran 𝑃)
88 ovex 7445 . . . . . . . . . . . . . . . . . 18 (𝑖𝑃𝐾) ∈ V
89 eleq1 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑖𝑃𝐾) β†’ (𝑦 ∈ ran 𝑃 ↔ (𝑖𝑃𝐾) ∈ ran 𝑃))
9089anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑖𝑃𝐾) β†’ ((πœ‘ ∧ 𝑦 ∈ ran 𝑃) ↔ (πœ‘ ∧ (𝑖𝑃𝐾) ∈ ran 𝑃)))
91 fveq2 6891 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑖𝑃𝐾) β†’ (πΆβ€˜π‘¦) = (πΆβ€˜(𝑖𝑃𝐾)))
92 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑖𝑃𝐾) β†’ 𝑦 = (𝑖𝑃𝐾))
9391, 92eleq12d 2826 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑖𝑃𝐾) β†’ ((πΆβ€˜π‘¦) ∈ 𝑦 ↔ (πΆβ€˜(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾)))
9490, 93imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑖𝑃𝐾) β†’ (((πœ‘ ∧ 𝑦 ∈ ran 𝑃) β†’ (πΆβ€˜π‘¦) ∈ 𝑦) ↔ ((πœ‘ ∧ (𝑖𝑃𝐾) ∈ ran 𝑃) β†’ (πΆβ€˜(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))))
95 smflimlem3.c . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ 𝑦 ∈ ran 𝑃) β†’ (πΆβ€˜π‘¦) ∈ 𝑦)
9688, 94, 95vtocl 3545 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ (𝑖𝑃𝐾) ∈ ran 𝑃) β†’ (πΆβ€˜(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))
9787, 96syldan 590 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (πΆβ€˜(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))
9882a1i 11 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ 𝑃 = (π‘š ∈ 𝑍, π‘˜ ∈ β„• ↦ {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))}))
9915adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((π‘š = 𝑖 ∧ π‘˜ = 𝐾) β†’ dom (πΉβ€˜π‘š) = dom (πΉβ€˜π‘–))
1008fveq1d 6893 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = π‘š β†’ ((πΉβ€˜π‘–)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘₯))
10110imbi1i 349 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = π‘š β†’ ((πΉβ€˜π‘–)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘₯)) ↔ (π‘š = 𝑖 β†’ ((πΉβ€˜π‘–)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘₯)))
102 eqcom 2738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((πΉβ€˜π‘–)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘₯) ↔ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘–)β€˜π‘₯))
103102imbi2i 336 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((π‘š = 𝑖 β†’ ((πΉβ€˜π‘–)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘₯)) ↔ (π‘š = 𝑖 β†’ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘–)β€˜π‘₯)))
104101, 103bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 = π‘š β†’ ((πΉβ€˜π‘–)β€˜π‘₯) = ((πΉβ€˜π‘š)β€˜π‘₯)) ↔ (π‘š = 𝑖 β†’ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘–)β€˜π‘₯)))
105100, 104mpbi 229 . . . . . . . . . . . . . . . . . . . . . . 23 (π‘š = 𝑖 β†’ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘–)β€˜π‘₯))
106105adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘š = 𝑖 ∧ π‘˜ = 𝐾) β†’ ((πΉβ€˜π‘š)β€˜π‘₯) = ((πΉβ€˜π‘–)β€˜π‘₯))
107 oveq2 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 (π‘˜ = 𝐾 β†’ (1 / π‘˜) = (1 / 𝐾))
108107oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . 23 (π‘˜ = 𝐾 β†’ (𝐴 + (1 / π‘˜)) = (𝐴 + (1 / 𝐾)))
109108adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘š = 𝑖 ∧ π‘˜ = 𝐾) β†’ (𝐴 + (1 / π‘˜)) = (𝐴 + (1 / 𝐾)))
110106, 109breq12d 5161 . . . . . . . . . . . . . . . . . . . . 21 ((π‘š = 𝑖 ∧ π‘˜ = 𝐾) β†’ (((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜)) ↔ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))))
11199, 110rabeqbidv 3448 . . . . . . . . . . . . . . . . . . . 20 ((π‘š = 𝑖 ∧ π‘˜ = 𝐾) β†’ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))})
11215ineq2d 4212 . . . . . . . . . . . . . . . . . . . . 21 (π‘š = 𝑖 β†’ (𝑠 ∩ dom (πΉβ€˜π‘š)) = (𝑠 ∩ dom (πΉβ€˜π‘–)))
113112adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((π‘š = 𝑖 ∧ π‘˜ = 𝐾) β†’ (𝑠 ∩ dom (πΉβ€˜π‘š)) = (𝑠 ∩ dom (πΉβ€˜π‘–)))
114111, 113eqeq12d 2747 . . . . . . . . . . . . . . . . . . 19 ((π‘š = 𝑖 ∧ π‘˜ = 𝐾) β†’ ({π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š)) ↔ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–))))
115114rabbidv 3439 . . . . . . . . . . . . . . . . . 18 ((π‘š = 𝑖 ∧ π‘˜ = 𝐾) β†’ {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))} = {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–))})
116115adantl 481 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (π‘š = 𝑖 ∧ π‘˜ = 𝐾)) β†’ {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘š) ∣ ((πΉβ€˜π‘š)β€˜π‘₯) < (𝐴 + (1 / π‘˜))} = (𝑠 ∩ dom (πΉβ€˜π‘š))} = {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–))})
117 eqid 2731 . . . . . . . . . . . . . . . . . . 19 {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–))} = {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–))}
118117, 76rabexd 5333 . . . . . . . . . . . . . . . . . 18 (πœ‘ β†’ {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–))} ∈ V)
119118adantr 480 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–))} ∈ V)
12098, 116, 66, 67, 119ovmpod 7563 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (𝑖𝑃𝐾) = {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–))})
12197, 120eleqtrd 2834 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (πΆβ€˜(𝑖𝑃𝐾)) ∈ {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–))})
122 ineq1 4205 . . . . . . . . . . . . . . . . 17 (𝑠 = (πΆβ€˜(𝑖𝑃𝐾)) β†’ (𝑠 ∩ dom (πΉβ€˜π‘–)) = ((πΆβ€˜(𝑖𝑃𝐾)) ∩ dom (πΉβ€˜π‘–)))
123122eqeq2d 2742 . . . . . . . . . . . . . . . 16 (𝑠 = (πΆβ€˜(𝑖𝑃𝐾)) β†’ ({π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–)) ↔ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = ((πΆβ€˜(𝑖𝑃𝐾)) ∩ dom (πΉβ€˜π‘–))))
124123elrab 3683 . . . . . . . . . . . . . . 15 ((πΆβ€˜(𝑖𝑃𝐾)) ∈ {𝑠 ∈ 𝑆 ∣ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (πΉβ€˜π‘–))} ↔ ((πΆβ€˜(𝑖𝑃𝐾)) ∈ 𝑆 ∧ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = ((πΆβ€˜(𝑖𝑃𝐾)) ∩ dom (πΉβ€˜π‘–))))
125121, 124sylib 217 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ((πΆβ€˜(𝑖𝑃𝐾)) ∈ 𝑆 ∧ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = ((πΆβ€˜(𝑖𝑃𝐾)) ∩ dom (πΉβ€˜π‘–))))
126125simprd 495 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} = ((πΆβ€˜(𝑖𝑃𝐾)) ∩ dom (πΉβ€˜π‘–)))
127126eqcomd 2737 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ((πΆβ€˜(𝑖𝑃𝐾)) ∩ dom (πΉβ€˜π‘–)) = {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))})
128127adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) β†’ ((πΆβ€˜(𝑖𝑃𝐾)) ∩ dom (πΉβ€˜π‘–)) = {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))})
12974, 128eleqtrd 2834 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) β†’ 𝑋 ∈ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))})
130 fveq2 6891 . . . . . . . . . . . 12 (π‘₯ = 𝑋 β†’ ((πΉβ€˜π‘–)β€˜π‘₯) = ((πΉβ€˜π‘–)β€˜π‘‹))
131 eqidd 2732 . . . . . . . . . . . 12 (π‘₯ = 𝑋 β†’ (𝐴 + (1 / 𝐾)) = (𝐴 + (1 / 𝐾)))
132130, 131breq12d 5161 . . . . . . . . . . 11 (π‘₯ = 𝑋 β†’ (((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾)) ↔ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾))))
133132elrab 3683 . . . . . . . . . 10 (𝑋 ∈ {π‘₯ ∈ dom (πΉβ€˜π‘–) ∣ ((πΉβ€˜π‘–)β€˜π‘₯) < (𝐴 + (1 / 𝐾))} ↔ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾))))
134129, 133sylib 217 . . . . . . . . 9 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) β†’ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾))))
135134simprd 495 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) β†’ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))
13659, 135jca 511 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) β†’ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾))))
137136ex 412 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ((𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) β†’ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))))
13855, 58, 137syl2anc 583 . . . . 5 (((πœ‘ ∧ π‘š ∈ 𝑍) ∧ 𝑖 ∈ (β„€β‰₯β€˜π‘š)) β†’ ((𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) β†’ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))))
139138ralimdva 3166 . . . 4 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) β†’ βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))))
140139reximdva 3167 . . 3 (πœ‘ β†’ (βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) β†’ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))))
14154, 140mpd 15 . 2 (πœ‘ β†’ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾))))
142 simprl 768 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))) β†’ 𝑋 ∈ dom (πΉβ€˜π‘–))
143 eleq1 2820 . . . . . . . . . . . . . 14 (π‘š = 𝑖 β†’ (π‘š ∈ 𝑍 ↔ 𝑖 ∈ 𝑍))
144143anbi2d 628 . . . . . . . . . . . . 13 (π‘š = 𝑖 β†’ ((πœ‘ ∧ π‘š ∈ 𝑍) ↔ (πœ‘ ∧ 𝑖 ∈ 𝑍)))
145 fveq2 6891 . . . . . . . . . . . . . 14 (π‘š = 𝑖 β†’ (πΉβ€˜π‘š) = (πΉβ€˜π‘–))
146145, 15feq12d 6705 . . . . . . . . . . . . 13 (π‘š = 𝑖 β†’ ((πΉβ€˜π‘š):dom (πΉβ€˜π‘š)βŸΆβ„ ↔ (πΉβ€˜π‘–):dom (πΉβ€˜π‘–)βŸΆβ„))
147144, 146imbi12d 344 . . . . . . . . . . . 12 (π‘š = 𝑖 β†’ (((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (πΉβ€˜π‘š):dom (πΉβ€˜π‘š)βŸΆβ„) ↔ ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (πΉβ€˜π‘–):dom (πΉβ€˜π‘–)βŸΆβ„)))
14876adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ 𝑆 ∈ SAlg)
149 smflimlem3.m . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (πΉβ€˜π‘š) ∈ (SMblFnβ€˜π‘†))
150 eqid 2731 . . . . . . . . . . . . 13 dom (πΉβ€˜π‘š) = dom (πΉβ€˜π‘š)
151148, 149, 150smff 45747 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (πΉβ€˜π‘š):dom (πΉβ€˜π‘š)βŸΆβ„)
152147, 151chvarvv 2001 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ (πΉβ€˜π‘–):dom (πΉβ€˜π‘–)βŸΆβ„)
153152adantr 480 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ dom (πΉβ€˜π‘–)) β†’ (πΉβ€˜π‘–):dom (πΉβ€˜π‘–)βŸΆβ„)
154 simpr 484 . . . . . . . . . 10 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ dom (πΉβ€˜π‘–)) β†’ 𝑋 ∈ dom (πΉβ€˜π‘–))
155153, 154ffvelcdmd 7087 . . . . . . . . 9 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ 𝑋 ∈ dom (πΉβ€˜π‘–)) β†’ ((πΉβ€˜π‘–)β€˜π‘‹) ∈ ℝ)
156155adantrr 714 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))) β†’ ((πΉβ€˜π‘–)β€˜π‘‹) ∈ ℝ)
157 smflimlem3.a . . . . . . . . . 10 (πœ‘ β†’ 𝐴 ∈ ℝ)
15842nnrecred 12268 . . . . . . . . . 10 (πœ‘ β†’ (1 / 𝐾) ∈ ℝ)
159157, 158readdcld 11248 . . . . . . . . 9 (πœ‘ β†’ (𝐴 + (1 / 𝐾)) ∈ ℝ)
160159ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))) β†’ (𝐴 + (1 / 𝐾)) ∈ ℝ)
161 smflimlem3.y . . . . . . . . . . 11 (πœ‘ β†’ π‘Œ ∈ ℝ+)
162161rpred 13021 . . . . . . . . . 10 (πœ‘ β†’ π‘Œ ∈ ℝ)
163157, 162readdcld 11248 . . . . . . . . 9 (πœ‘ β†’ (𝐴 + π‘Œ) ∈ ℝ)
164163ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))) β†’ (𝐴 + π‘Œ) ∈ ℝ)
165 simprr 770 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))) β†’ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))
166 smflimlem3.l . . . . . . . . . 10 (πœ‘ β†’ (1 / 𝐾) < π‘Œ)
167158, 162, 157, 166ltadd2dd 11378 . . . . . . . . 9 (πœ‘ β†’ (𝐴 + (1 / 𝐾)) < (𝐴 + π‘Œ))
168167ad2antrr 723 . . . . . . . 8 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))) β†’ (𝐴 + (1 / 𝐾)) < (𝐴 + π‘Œ))
169156, 160, 164, 165, 168lttrd 11380 . . . . . . 7 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))) β†’ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + π‘Œ))
170142, 169jca 511 . . . . . 6 (((πœ‘ ∧ 𝑖 ∈ 𝑍) ∧ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾)))) β†’ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + π‘Œ)))
171170ex 412 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ 𝑍) β†’ ((𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾))) β†’ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + π‘Œ))))
17255, 58, 171syl2anc 583 . . . 4 (((πœ‘ ∧ π‘š ∈ 𝑍) ∧ 𝑖 ∈ (β„€β‰₯β€˜π‘š)) β†’ ((𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾))) β†’ (𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + π‘Œ))))
173172ralimdva 3166 . . 3 ((πœ‘ ∧ π‘š ∈ 𝑍) β†’ (βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾))) β†’ βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + π‘Œ))))
174173reximdva 3167 . 2 (πœ‘ β†’ (βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + (1 / 𝐾))) β†’ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + π‘Œ))))
175141, 174mpd 15 1 (πœ‘ β†’ βˆƒπ‘š ∈ 𝑍 βˆ€π‘– ∈ (β„€β‰₯β€˜π‘š)(𝑋 ∈ dom (πΉβ€˜π‘–) ∧ ((πΉβ€˜π‘–)β€˜π‘‹) < (𝐴 + π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069  {crab 3431  Vcvv 3473   ∩ cin 3947  βˆͺ ciun 4997  βˆ© ciin 4998   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674  dom cdm 5676  ran crn 5677   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414  β„cr 11113  1c1 11115   + caddc 11117   < clt 11253   / cdiv 11876  β„•cn 12217  β„€β‰₯cuz 12827  β„+crp 12979   ⇝ cli 15433  SAlgcsalg 45323  SMblFncsmblfn 45710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-pm 8827  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-z 12564  df-uz 12828  df-rp 12980  df-ioo 13333  df-ico 13335  df-smblfn 45711
This theorem is referenced by:  smflimlem4  45789
  Copyright terms: Public domain W3C validator