Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspdifhsp Structured version   Visualization version   GIF version

Theorem hspdifhsp 46631
Description: A n-dimensional half-open interval is the intersection of the difference of half spaces. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspdifhsp.x (𝜑𝑋 ∈ Fin)
hspdifhsp.n (𝜑𝑋 ≠ ∅)
hspdifhsp.a (𝜑𝐴:𝑋⟶ℝ)
hspdifhsp.b (𝜑𝐵:𝑋⟶ℝ)
hspdifhsp.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
Assertion
Ref Expression
hspdifhsp (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
Distinct variable groups:   𝐴,𝑖,𝑙,𝑥,𝑦   𝐵,𝑖,𝑙,𝑥,𝑦   𝑖,𝐻,𝑙,𝑥,𝑦   𝑖,𝑋,𝑙,𝑥,𝑦   𝜑,𝑖,𝑙,𝑥,𝑦

Proof of Theorem hspdifhsp
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . . . . 8 𝑖𝜑
2 nfcv 2905 . . . . . . . . 9 𝑖𝑓
3 nfixp1 8958 . . . . . . . . 9 𝑖X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))
42, 3nfel 2920 . . . . . . . 8 𝑖 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))
51, 4nfan 1899 . . . . . . 7 𝑖(𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
6 ixpfn 8943 . . . . . . . . . . . . 13 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → 𝑓 Fn 𝑋)
76ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 Fn 𝑋)
8 fveq2 6906 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
98oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) = (-∞(,)(𝐵𝑖)))
10 iftrue 4531 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) = (-∞(,)(𝐵𝑖)))
119, 10eqtr4d 2780 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) = if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
12 eqimss 4042 . . . . . . . . . . . . . . . . 17 ((-∞(,)(𝐵𝑘)) = if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
1311, 12syl 17 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
14 ioossre 13448 . . . . . . . . . . . . . . . . 17 (-∞(,)(𝐵𝑘)) ⊆ ℝ
15 iffalse 4534 . . . . . . . . . . . . . . . . 17 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) = ℝ)
1614, 15sseqtrrid 4027 . . . . . . . . . . . . . . . 16 𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
1713, 16pm2.61i 182 . . . . . . . . . . . . . . 15 (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)
18 mnfxr 11318 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
1918a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → -∞ ∈ ℝ*)
20 hspdifhsp.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵:𝑋⟶ℝ)
2120ffvelcdmda 7104 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
2221rexrd 11311 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
2322adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
24 hspdifhsp.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴:𝑋⟶ℝ)
2524ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
26 icossre 13468 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
2725, 22, 26syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
2827adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
29 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
30 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → 𝑘𝑋)
31 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐴𝑖) = (𝐴𝑘))
32 fveq2 6906 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐵𝑖) = (𝐵𝑘))
3331, 32oveq12d 7449 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑘 → ((𝐴𝑖)[,)(𝐵𝑖)) = ((𝐴𝑘)[,)(𝐵𝑘)))
3433fvixp 8942 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3529, 30, 34syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3635adantll 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3728, 36sseldd 3984 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
3837mnfltd 13166 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → -∞ < (𝑓𝑘))
3925rexrd 11311 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
4039adantlr 715 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
41 icoltub 45521 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ* ∧ (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘))) → (𝑓𝑘) < (𝐵𝑘))
4240, 23, 36, 41syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) < (𝐵𝑘))
4319, 23, 37, 38, 42eliood 45511 . . . . . . . . . . . . . . 15 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (-∞(,)(𝐵𝑘)))
4417, 43sselid 3981 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
4544adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
4645ralrimiva 3146 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
477, 46jca 511 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)))
48 vex 3484 . . . . . . . . . . . 12 𝑓 ∈ V
4948elixp 8944 . . . . . . . . . . 11 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)))
5047, 49sylibr 234 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
51 hspdifhsp.h . . . . . . . . . . . . 13 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
52 equequ1 2024 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘 → (𝑖 = 𝑙𝑘 = 𝑙))
5352ifbid 4549 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5453cbvixpv 8955 . . . . . . . . . . . . . . . 16 X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)
5554a1i 11 . . . . . . . . . . . . . . 15 ((𝑙𝑥𝑦 ∈ ℝ) → X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5655mpoeq3ia 7511 . . . . . . . . . . . . . 14 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5756mpteq2i 5247 . . . . . . . . . . . . 13 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
5851, 57eqtri 2765 . . . . . . . . . . . 12 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
59 hspdifhsp.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
6059adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝑋 ∈ Fin)
61 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝑖𝑋)
6220adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → 𝐵:𝑋⟶ℝ)
6362, 61ffvelcdmd 7105 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
6458, 60, 61, 63hspval 46624 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
6564adantlr 715 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
6650, 65eleqtrrd 2844 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
6718a1i 11 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → -∞ ∈ ℝ*)
6824adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐴:𝑋⟶ℝ)
6968, 61ffvelcdmd 7105 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
7069rexrd 11311 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
7170adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝐴𝑖) ∈ ℝ*)
72 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
7358, 60, 61, 69hspval 46624 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐴𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7473adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑖(𝐻𝑋)(𝐴𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7572, 74eleqtrd 2843 . . . . . . . . . . . . 13 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7661adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑖𝑋)
77 iftrue 4531 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (-∞(,)(𝐴𝑖)))
7877fvixp 8942 . . . . . . . . . . . . 13 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
7975, 76, 78syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
80 iooltub 45523 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ (𝐴𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8167, 71, 79, 80syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8281adantllr 719 . . . . . . . . . 10 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8370adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
8463rexrd 11311 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
8584adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
8648elixp 8944 . . . . . . . . . . . . . . . . 17 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
8786biimpi 216 . . . . . . . . . . . . . . . 16 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
8887simprd 495 . . . . . . . . . . . . . . 15 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
89 rspa 3248 . . . . . . . . . . . . . . 15 ((∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
9088, 89sylan 580 . . . . . . . . . . . . . 14 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
9190adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
92 icogelb 13438 . . . . . . . . . . . . 13 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))) → (𝐴𝑖) ≤ (𝑓𝑖))
9383, 85, 91, 92syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ (𝑓𝑖))
9469adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
95 icossre 13468 . . . . . . . . . . . . . . . 16 (((𝐴𝑖) ∈ ℝ ∧ (𝐵𝑖) ∈ ℝ*) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9669, 84, 95syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9796adantlr 715 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9897, 91sseldd 3984 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
9994, 98lenltd 11407 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ((𝐴𝑖) ≤ (𝑓𝑖) ↔ ¬ (𝑓𝑖) < (𝐴𝑖)))
10093, 99mpbid 232 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ¬ (𝑓𝑖) < (𝐴𝑖))
101100adantr 480 . . . . . . . . . 10 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → ¬ (𝑓𝑖) < (𝐴𝑖))
10282, 101pm2.65da 817 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
10366, 102eldifd 3962 . . . . . . . 8 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
104103ex 412 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → (𝑖𝑋𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
1055, 104ralrimi 3257 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
106 eliin 4996 . . . . . . 7 (𝑓 ∈ V → (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
10748, 106ax-mp 5 . . . . . 6 (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
108105, 107sylibr 234 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
109108ex 412 . . . 4 (𝜑 → (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
110 hspdifhsp.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
111 n0 4353 . . . . . . . . . . 11 (𝑋 ≠ ∅ ↔ ∃𝑘 𝑘𝑋)
112111biimpi 216 . . . . . . . . . 10 (𝑋 ≠ ∅ → ∃𝑘 𝑘𝑋)
113110, 112syl 17 . . . . . . . . 9 (𝜑 → ∃𝑘 𝑘𝑋)
114113adantr 480 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → ∃𝑘 𝑘𝑋)
115 simpl 482 . . . . . . . . . . . . . . 15 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
116 simpr 484 . . . . . . . . . . . . . . 15 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑘𝑋)
117 id 22 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘𝑖 = 𝑘)
118117, 32oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖(𝐻𝑋)(𝐵𝑖)) = (𝑘(𝐻𝑋)(𝐵𝑘)))
119117, 31oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖(𝐻𝑋)(𝐴𝑖)) = (𝑘(𝐻𝑋)(𝐴𝑘)))
120118, 119difeq12d 4127 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) = ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘))))
121120eleq2d 2827 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ 𝑓 ∈ ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘)))))
122115, 116, 121eliind 45076 . . . . . . . . . . . . . 14 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 ∈ ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘))))
123122eldifad 3963 . . . . . . . . . . . . 13 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 ∈ (𝑘(𝐻𝑋)(𝐵𝑘)))
124123adantll 714 . . . . . . . . . . . 12 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓 ∈ (𝑘(𝐻𝑋)(𝐵𝑘)))
125 equequ1 2024 . . . . . . . . . . . . . . . . . . 19 (𝑖 = → (𝑖 = 𝑙 = 𝑙))
126125ifbid 4549 . . . . . . . . . . . . . . . . . 18 (𝑖 = → if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = if( = 𝑙, (-∞(,)𝑦), ℝ))
127126cbvixpv 8955 . . . . . . . . . . . . . . . . 17 X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)
128127a1i 11 . . . . . . . . . . . . . . . 16 ((𝑙𝑥𝑦 ∈ ℝ) → X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ))
129128mpoeq3ia 7511 . . . . . . . . . . . . . . 15 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ))
130129mpteq2i 5247 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)))
13151, 130eqtri 2765 . . . . . . . . . . . . 13 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)))
13259ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑋 ∈ Fin)
133 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑘𝑋)
13421adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
135131, 132, 133, 134hspval 46624 . . . . . . . . . . . 12 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → (𝑘(𝐻𝑋)(𝐵𝑘)) = X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ))
136124, 135eleqtrd 2843 . . . . . . . . . . 11 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ))
137 ixpfn 8943 . . . . . . . . . . 11 (𝑓X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ) → 𝑓 Fn 𝑋)
138136, 137syl 17 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓 Fn 𝑋)
139138ex 412 . . . . . . . . 9 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑘𝑋𝑓 Fn 𝑋))
140139exlimdv 1933 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (∃𝑘 𝑘𝑋𝑓 Fn 𝑋))
141114, 140mpd 15 . . . . . . 7 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓 Fn 𝑋)
142 nfii1 5029 . . . . . . . . . 10 𝑖 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))
1432, 142nfel 2920 . . . . . . . . 9 𝑖 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))
1441, 143nfan 1899 . . . . . . . 8 𝑖(𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
145 simpll 767 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝜑)
146107biimpi 216 . . . . . . . . . . . . 13 (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
147146adantr 480 . . . . . . . . . . . 12 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
148 simpr 484 . . . . . . . . . . . 12 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑖𝑋)
149 rspa 3248 . . . . . . . . . . . 12 ((∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
150147, 148, 149syl2anc 584 . . . . . . . . . . 11 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
151150adantll 714 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
152 simpr 484 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑖𝑋)
15370adantlr 715 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
15484adantlr 715 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
155 simpll 767 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝜑)
156 eldifi 4131 . . . . . . . . . . . . . 14 (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
157156ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
158 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑖𝑋)
159 ioossre 13448 . . . . . . . . . . . . . 14 (-∞(,)(𝐵𝑖)) ⊆ ℝ
160 simplr 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
16164adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
162160, 161eleqtrd 2843 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
163 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑖𝑋)
16410fvixp 8942 . . . . . . . . . . . . . . 15 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖)))
165162, 163, 164syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖)))
166159, 165sselid 3981 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
167155, 157, 158, 166syl21anc 838 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
168167rexrd 11311 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ*)
169 simpl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝜑)
170156adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
171169, 170jca 511 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))))
172171ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))))
173 simplr 769 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑖𝑋)
174 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) < (𝐴𝑖))
175 ixpfn 8943 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) → 𝑓 Fn 𝑋)
176162, 175syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 Fn 𝑋)
177176adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 Fn 𝑋)
178 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝑓𝑘) = (𝑓𝑖))
179178adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑘) = (𝑓𝑖))
18018a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → -∞ ∈ ℝ*)
18170ad4ant13 751 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝐴𝑖) ∈ ℝ*)
182166adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) ∈ ℝ)
183182mnfltd 13166 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → -∞ < (𝑓𝑖))
184 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) < (𝐴𝑖))
185180, 181, 182, 183, 184eliood 45511 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
186185adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
187179, 186eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ (-∞(,)(𝐴𝑖)))
188187adantlr 715 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ (-∞(,)(𝐴𝑖)))
18977eqcomd 2743 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (-∞(,)(𝐴𝑖)) = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
190189adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (-∞(,)(𝐴𝑖)) = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
191188, 190eleqtrd 2843 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
19210, 159eqsstrdi 4028 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ)
193 ssid 4006 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℝ
19415, 193eqsstrdi 4028 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ)
195192, 194pm2.61i 182 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ
196162adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
197 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → 𝑘𝑋)
198 fvixp2 45204 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
199196, 197, 198syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
200195, 199sselid 3981 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
201200adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ ℝ)
202 iffalse 4534 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = ℝ)
203202eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . 22 𝑘 = 𝑖 → ℝ = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
204203adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → ℝ = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
205201, 204eleqtrd 2843 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
206205adantllr 719 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
207191, 206pm2.61dan 813 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
208207ralrimiva 3146 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
209177, 208jca 511 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ)))
21048elixp 8944 . . . . . . . . . . . . . . . 16 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ)))
211209, 210sylibr 234 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
21273eqcomd 2743 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (𝑖(𝐻𝑋)(𝐴𝑖)))
213212ad4ant13 751 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (𝑖(𝐻𝑋)(𝐴𝑖)))
214211, 213eleqtrd 2843 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
215172, 173, 174, 214syl21anc 838 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
216 eldifn 4132 . . . . . . . . . . . . . 14 (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
217216ad3antlr 731 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
218215, 217pm2.65da 817 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → ¬ (𝑓𝑖) < (𝐴𝑖))
219155, 158, 69syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
220219, 167lenltd 11407 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → ((𝐴𝑖) ≤ (𝑓𝑖) ↔ ¬ (𝑓𝑖) < (𝐴𝑖)))
221218, 220mpbird 257 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ (𝑓𝑖))
22218a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → -∞ ∈ ℝ*)
22384adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
224 iooltub 45523 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖))) → (𝑓𝑖) < (𝐵𝑖))
225222, 223, 165, 224syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) < (𝐵𝑖))
226155, 157, 158, 225syl21anc 838 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) < (𝐵𝑖))
227153, 154, 168, 221, 226elicod 13437 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
228145, 151, 152, 227syl21anc 838 . . . . . . . . 9 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
229228ex 412 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑖𝑋 → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
230144, 229ralrimi 3257 . . . . . . 7 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
231141, 230jca 511 . . . . . 6 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
232231, 86sylibr 234 . . . . 5 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
233232ex 412 . . . 4 (𝜑 → (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))))
234109, 233impbid 212 . . 3 (𝜑 → (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
235234alrimiv 1927 . 2 (𝜑 → ∀𝑓(𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
236 dfcleq 2730 . 2 (X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑓(𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
237235, 236sylibr 234 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cdif 3948  wss 3951  c0 4333  ifcif 4525   ciin 4992   class class class wbr 5143  cmpt 5225   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  Xcixp 8937  Fincfn 8985  cr 11154  -∞cmnf 11293  *cxr 11294   < clt 11295  cle 11296  (,)cioo 13387  [,)cico 13389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-ioo 13391  df-ico 13393
This theorem is referenced by:  hoimbllem  46645
  Copyright terms: Public domain W3C validator