Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspdifhsp Structured version   Visualization version   GIF version

Theorem hspdifhsp 43255
Description: A n-dimensional half-open interval is the intersection of the difference of half spaces. This is a substep of Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspdifhsp.x (𝜑𝑋 ∈ Fin)
hspdifhsp.n (𝜑𝑋 ≠ ∅)
hspdifhsp.a (𝜑𝐴:𝑋⟶ℝ)
hspdifhsp.b (𝜑𝐵:𝑋⟶ℝ)
hspdifhsp.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
Assertion
Ref Expression
hspdifhsp (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
Distinct variable groups:   𝐴,𝑖,𝑙,𝑥,𝑦   𝐵,𝑖,𝑙,𝑥,𝑦   𝑖,𝐻,𝑙,𝑥,𝑦   𝑖,𝑋,𝑙,𝑥,𝑦   𝜑,𝑖,𝑙,𝑥,𝑦

Proof of Theorem hspdifhsp
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . . . . 8 𝑖𝜑
2 nfcv 2955 . . . . . . . . 9 𝑖𝑓
3 nfixp1 8465 . . . . . . . . 9 𝑖X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))
42, 3nfel 2969 . . . . . . . 8 𝑖 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))
51, 4nfan 1900 . . . . . . 7 𝑖(𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
6 ixpfn 8450 . . . . . . . . . . . . 13 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → 𝑓 Fn 𝑋)
76ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 Fn 𝑋)
8 fveq2 6645 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → (𝐵𝑘) = (𝐵𝑖))
98oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) = (-∞(,)(𝐵𝑖)))
10 iftrue 4431 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) = (-∞(,)(𝐵𝑖)))
119, 10eqtr4d 2836 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) = if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
12 eqimss 3971 . . . . . . . . . . . . . . . . 17 ((-∞(,)(𝐵𝑘)) = if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
1311, 12syl 17 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
14 ioossre 12786 . . . . . . . . . . . . . . . . 17 (-∞(,)(𝐵𝑘)) ⊆ ℝ
15 iffalse 4434 . . . . . . . . . . . . . . . . 17 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) = ℝ)
1614, 15sseqtrrid 3968 . . . . . . . . . . . . . . . 16 𝑘 = 𝑖 → (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
1713, 16pm2.61i 185 . . . . . . . . . . . . . . 15 (-∞(,)(𝐵𝑘)) ⊆ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)
18 mnfxr 10687 . . . . . . . . . . . . . . . . 17 -∞ ∈ ℝ*
1918a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → -∞ ∈ ℝ*)
20 hspdifhsp.b . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵:𝑋⟶ℝ)
2120ffvelrnda 6828 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
2221rexrd 10680 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
2322adantlr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
24 hspdifhsp.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴:𝑋⟶ℝ)
2524ffvelrnda 6828 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
26 icossre 12806 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
2725, 22, 26syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
2827adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ⊆ ℝ)
29 simpl 486 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
30 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → 𝑘𝑋)
31 fveq2 6645 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐴𝑖) = (𝐴𝑘))
32 fveq2 6645 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 𝑘 → (𝐵𝑖) = (𝐵𝑘))
3331, 32oveq12d 7153 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑘 → ((𝐴𝑖)[,)(𝐵𝑖)) = ((𝐴𝑘)[,)(𝐵𝑘)))
3433fvixp 8449 . . . . . . . . . . . . . . . . . . 19 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3529, 30, 34syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3635adantll 713 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘)))
3728, 36sseldd 3916 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
3837mnfltd 12507 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → -∞ < (𝑓𝑘))
3925rexrd 10680 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
4039adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
41 icoltub 42145 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ* ∧ (𝑓𝑘) ∈ ((𝐴𝑘)[,)(𝐵𝑘))) → (𝑓𝑘) < (𝐵𝑘))
4240, 23, 36, 41syl3anc 1368 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) < (𝐵𝑘))
4319, 23, 37, 38, 42eliood 42135 . . . . . . . . . . . . . . 15 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ (-∞(,)(𝐵𝑘)))
4417, 43sseldi 3913 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
4544adantlr 714 . . . . . . . . . . . . 13 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
4645ralrimiva 3149 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
477, 46jca 515 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)))
48 vex 3444 . . . . . . . . . . . 12 𝑓 ∈ V
4948elixp 8451 . . . . . . . . . . 11 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ)))
5047, 49sylibr 237 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
51 hspdifhsp.h . . . . . . . . . . . . 13 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)))
52 equequ1 2032 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘 → (𝑖 = 𝑙𝑘 = 𝑙))
5352ifbid 4447 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5453cbvixpv 8462 . . . . . . . . . . . . . . . 16 X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)
5554a1i 11 . . . . . . . . . . . . . . 15 ((𝑙𝑥𝑦 ∈ ℝ) → X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5655mpoeq3ia 7211 . . . . . . . . . . . . . 14 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ))
5756mpteq2i 5122 . . . . . . . . . . . . 13 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
5851, 57eqtri 2821 . . . . . . . . . . . 12 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
59 hspdifhsp.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
6059adantr 484 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝑋 ∈ Fin)
61 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → 𝑖𝑋)
6220adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → 𝐵:𝑋⟶ℝ)
6362, 61ffvelrnd 6829 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
6458, 60, 61, 63hspval 43248 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
6564adantlr 714 . . . . . . . . . 10 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
6650, 65eleqtrrd 2893 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
6718a1i 11 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → -∞ ∈ ℝ*)
6824adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → 𝐴:𝑋⟶ℝ)
6968, 61ffvelrnd 6829 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
7069rexrd 10680 . . . . . . . . . . . . 13 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
7170adantr 484 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝐴𝑖) ∈ ℝ*)
72 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
7358, 60, 61, 69hspval 43248 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → (𝑖(𝐻𝑋)(𝐴𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7473adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑖(𝐻𝑋)(𝐴𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7572, 74eleqtrd 2892 . . . . . . . . . . . . 13 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
7661adantr 484 . . . . . . . . . . . . 13 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑖𝑋)
77 iftrue 4431 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (-∞(,)(𝐴𝑖)))
7877fvixp 8449 . . . . . . . . . . . . 13 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
7975, 76, 78syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
80 iooltub 42147 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ (𝐴𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8167, 71, 79, 80syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8281adantllr 718 . . . . . . . . . 10 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → (𝑓𝑖) < (𝐴𝑖))
8370adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
8463rexrd 10680 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
8584adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
8648elixp 8451 . . . . . . . . . . . . . . . . 17 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
8786biimpi 219 . . . . . . . . . . . . . . . 16 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
8887simprd 499 . . . . . . . . . . . . . . 15 (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
89 rspa 3171 . . . . . . . . . . . . . . 15 ((∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
9088, 89sylan 583 . . . . . . . . . . . . . 14 ((𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
9190adantll 713 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
92 icogelb 12776 . . . . . . . . . . . . 13 (((𝐴𝑖) ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))) → (𝐴𝑖) ≤ (𝑓𝑖))
9383, 85, 91, 92syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ (𝑓𝑖))
9469adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
95 icossre 12806 . . . . . . . . . . . . . . . 16 (((𝐴𝑖) ∈ ℝ ∧ (𝐵𝑖) ∈ ℝ*) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9669, 84, 95syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9796adantlr 714 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ((𝐴𝑖)[,)(𝐵𝑖)) ⊆ ℝ)
9897, 91sseldd 3916 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
9994, 98lenltd 10775 . . . . . . . . . . . 12 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ((𝐴𝑖) ≤ (𝑓𝑖) ↔ ¬ (𝑓𝑖) < (𝐴𝑖)))
10093, 99mpbid 235 . . . . . . . . . . 11 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ¬ (𝑓𝑖) < (𝐴𝑖))
101100adantr 484 . . . . . . . . . 10 ((((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖))) → ¬ (𝑓𝑖) < (𝐴𝑖))
10282, 101pm2.65da 816 . . . . . . . . 9 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
10366, 102eldifd 3892 . . . . . . . 8 (((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
104103ex 416 . . . . . . 7 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → (𝑖𝑋𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
1055, 104ralrimi 3180 . . . . . 6 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
106 eliin 4886 . . . . . . 7 (𝑓 ∈ V → (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
10748, 106ax-mp 5 . . . . . 6 (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
108105, 107sylibr 237 . . . . 5 ((𝜑𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
109108ex 416 . . . 4 (𝜑 → (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
110 hspdifhsp.n . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
111 n0 4260 . . . . . . . . . . 11 (𝑋 ≠ ∅ ↔ ∃𝑘 𝑘𝑋)
112111biimpi 219 . . . . . . . . . 10 (𝑋 ≠ ∅ → ∃𝑘 𝑘𝑋)
113110, 112syl 17 . . . . . . . . 9 (𝜑 → ∃𝑘 𝑘𝑋)
114113adantr 484 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → ∃𝑘 𝑘𝑋)
115 simpl 486 . . . . . . . . . . . . . . 15 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
116 simpr 488 . . . . . . . . . . . . . . 15 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑘𝑋)
117 id 22 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘𝑖 = 𝑘)
118117, 32oveq12d 7153 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖(𝐻𝑋)(𝐵𝑖)) = (𝑘(𝐻𝑋)(𝐵𝑘)))
119117, 31oveq12d 7153 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖(𝐻𝑋)(𝐴𝑖)) = (𝑘(𝐻𝑋)(𝐴𝑘)))
120118, 119difeq12d 4051 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) = ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘))))
121120eleq2d 2875 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ 𝑓 ∈ ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘)))))
122115, 116, 121eliind 41705 . . . . . . . . . . . . . 14 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 ∈ ((𝑘(𝐻𝑋)(𝐵𝑘)) ∖ (𝑘(𝐻𝑋)(𝐴𝑘))))
123122eldifad 3893 . . . . . . . . . . . . 13 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑘𝑋) → 𝑓 ∈ (𝑘(𝐻𝑋)(𝐵𝑘)))
124123adantll 713 . . . . . . . . . . . 12 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓 ∈ (𝑘(𝐻𝑋)(𝐵𝑘)))
125 equequ1 2032 . . . . . . . . . . . . . . . . . . 19 (𝑖 = → (𝑖 = 𝑙 = 𝑙))
126125ifbid 4447 . . . . . . . . . . . . . . . . . 18 (𝑖 = → if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = if( = 𝑙, (-∞(,)𝑦), ℝ))
127126cbvixpv 8462 . . . . . . . . . . . . . . . . 17 X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)
128127a1i 11 . . . . . . . . . . . . . . . 16 ((𝑙𝑥𝑦 ∈ ℝ) → X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ) = X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ))
129128mpoeq3ia 7211 . . . . . . . . . . . . . . 15 (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ)) = (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ))
130129mpteq2i 5122 . . . . . . . . . . . . . 14 (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑖𝑥 if(𝑖 = 𝑙, (-∞(,)𝑦), ℝ))) = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)))
13151, 130eqtri 2821 . . . . . . . . . . . . 13 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑥 if( = 𝑙, (-∞(,)𝑦), ℝ)))
13259ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑋 ∈ Fin)
133 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑘𝑋)
13421adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
135131, 132, 133, 134hspval 43248 . . . . . . . . . . . 12 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → (𝑘(𝐻𝑋)(𝐵𝑘)) = X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ))
136124, 135eleqtrd 2892 . . . . . . . . . . 11 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ))
137 ixpfn 8450 . . . . . . . . . . 11 (𝑓X𝑋 if( = 𝑘, (-∞(,)(𝐵𝑘)), ℝ) → 𝑓 Fn 𝑋)
138136, 137syl 17 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑘𝑋) → 𝑓 Fn 𝑋)
139138ex 416 . . . . . . . . 9 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑘𝑋𝑓 Fn 𝑋))
140139exlimdv 1934 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (∃𝑘 𝑘𝑋𝑓 Fn 𝑋))
141114, 140mpd 15 . . . . . . 7 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓 Fn 𝑋)
142 nfii1 4916 . . . . . . . . . 10 𝑖 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))
1432, 142nfel 2969 . . . . . . . . 9 𝑖 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))
1441, 143nfan 1900 . . . . . . . 8 𝑖(𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
145 simpll 766 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝜑)
146107biimpi 219 . . . . . . . . . . . . 13 (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
147146adantr 484 . . . . . . . . . . . 12 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → ∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
148 simpr 488 . . . . . . . . . . . 12 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑖𝑋)
149 rspa 3171 . . . . . . . . . . . 12 ((∀𝑖𝑋 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
150147, 148, 149syl2anc 587 . . . . . . . . . . 11 ((𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
151150adantll 713 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
152 simpr 488 . . . . . . . . . 10 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑖𝑋)
15370adantlr 714 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ*)
15484adantlr 714 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
155 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝜑)
156 eldifi 4054 . . . . . . . . . . . . . 14 (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
157156ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
158 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → 𝑖𝑋)
159 ioossre 12786 . . . . . . . . . . . . . 14 (-∞(,)(𝐵𝑖)) ⊆ ℝ
160 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
16164adantlr 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑖(𝐻𝑋)(𝐵𝑖)) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
162160, 161eleqtrd 2892 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
163 simpr 488 . . . . . . . . . . . . . . 15 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑖𝑋)
16410fvixp 8449 . . . . . . . . . . . . . . 15 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖)))
165162, 163, 164syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖)))
166159, 165sseldi 3913 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
167155, 157, 158, 166syl21anc 836 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ)
168167rexrd 10680 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ℝ*)
169 simpl 486 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝜑)
170156adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖)))
171169, 170jca 515 . . . . . . . . . . . . . . 15 ((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))))
172171ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))))
173 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑖𝑋)
174 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) < (𝐴𝑖))
175 ixpfn 8450 . . . . . . . . . . . . . . . . . . 19 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) → 𝑓 Fn 𝑋)
176162, 175syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → 𝑓 Fn 𝑋)
177176adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 Fn 𝑋)
178 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝑓𝑘) = (𝑓𝑖))
179178adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑘) = (𝑓𝑖))
18018a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → -∞ ∈ ℝ*)
18170ad4ant13 750 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝐴𝑖) ∈ ℝ*)
182166adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) ∈ ℝ)
183182mnfltd 12507 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → -∞ < (𝑓𝑖))
184 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) < (𝐴𝑖))
185180, 181, 182, 183, 184eliood 42135 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
186185adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑖) ∈ (-∞(,)(𝐴𝑖)))
187179, 186eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ (-∞(,)(𝐴𝑖)))
188187adantlr 714 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ (-∞(,)(𝐴𝑖)))
18977eqcomd 2804 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (-∞(,)(𝐴𝑖)) = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
190189adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (-∞(,)(𝐴𝑖)) = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
191188, 190eleqtrd 2892 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
19210, 159eqsstrdi 3969 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ)
193 ssid 3937 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ ⊆ ℝ
19415, 193eqsstrdi 3969 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ)
195192, 194pm2.61i 185 . . . . . . . . . . . . . . . . . . . . . . 23 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ⊆ ℝ
196162adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
197 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → 𝑘𝑋)
198 fvixp2 41827 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
199196, 197, 198syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐵𝑖)), ℝ))
200195, 199sseldi 3913 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ ℝ)
201200adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ ℝ)
202 iffalse 4434 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 = 𝑖 → if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = ℝ)
203202eqcomd 2804 . . . . . . . . . . . . . . . . . . . . . 22 𝑘 = 𝑖 → ℝ = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
204203adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → ℝ = if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
205201, 204eleqtrd 2892 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
206205adantllr 718 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) ∧ ¬ 𝑘 = 𝑖) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
207191, 206pm2.61dan 812 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) ∧ 𝑘𝑋) → (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
208207ralrimiva 3149 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
209177, 208jca 515 . . . . . . . . . . . . . . . 16 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ)))
21048elixp 8451 . . . . . . . . . . . . . . . 16 (𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) ↔ (𝑓 Fn 𝑋 ∧ ∀𝑘𝑋 (𝑓𝑘) ∈ if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ)))
211209, 210sylibr 237 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ))
21273eqcomd 2804 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (𝑖(𝐻𝑋)(𝐴𝑖)))
213212ad4ant13 750 . . . . . . . . . . . . . . 15 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)(𝐴𝑖)), ℝ) = (𝑖(𝐻𝑋)(𝐴𝑖)))
214211, 213eleqtrd 2892 . . . . . . . . . . . . . 14 ((((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
215172, 173, 174, 214syl21anc 836 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
216 eldifn 4055 . . . . . . . . . . . . . 14 (𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
217216ad3antlr 730 . . . . . . . . . . . . 13 ((((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) ∧ (𝑓𝑖) < (𝐴𝑖)) → ¬ 𝑓 ∈ (𝑖(𝐻𝑋)(𝐴𝑖)))
218215, 217pm2.65da 816 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → ¬ (𝑓𝑖) < (𝐴𝑖))
219155, 158, 69syl2anc 587 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
220219, 167lenltd 10775 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → ((𝐴𝑖) ≤ (𝑓𝑖) ↔ ¬ (𝑓𝑖) < (𝐴𝑖)))
221218, 220mpbird 260 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝐴𝑖) ≤ (𝑓𝑖))
22218a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → -∞ ∈ ℝ*)
22384adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ*)
224 iooltub 42147 . . . . . . . . . . . . 13 ((-∞ ∈ ℝ* ∧ (𝐵𝑖) ∈ ℝ* ∧ (𝑓𝑖) ∈ (-∞(,)(𝐵𝑖))) → (𝑓𝑖) < (𝐵𝑖))
225222, 223, 165, 224syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝑖(𝐻𝑋)(𝐵𝑖))) ∧ 𝑖𝑋) → (𝑓𝑖) < (𝐵𝑖))
226155, 157, 158, 225syl21anc 836 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) < (𝐵𝑖))
227153, 154, 168, 221, 226elicod 12775 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
228145, 151, 152, 227syl21anc 836 . . . . . . . . 9 (((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) ∧ 𝑖𝑋) → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
229228ex 416 . . . . . . . 8 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑖𝑋 → (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
230144, 229ralrimi 3180 . . . . . . 7 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖)))
231141, 230jca 515 . . . . . 6 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → (𝑓 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑓𝑖) ∈ ((𝐴𝑖)[,)(𝐵𝑖))))
232231, 86sylibr 237 . . . . 5 ((𝜑𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)))
233232ex 416 . . . 4 (𝜑 → (𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) → 𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖))))
234109, 233impbid 215 . . 3 (𝜑 → (𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
235234alrimiv 1928 . 2 (𝜑 → ∀𝑓(𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
236 dfcleq 2792 . 2 (X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))) ↔ ∀𝑓(𝑓X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) ↔ 𝑓 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖)))))
237235, 236sylibr 237 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,)(𝐵𝑖)) = 𝑖𝑋 ((𝑖(𝐻𝑋)(𝐵𝑖)) ∖ (𝑖(𝐻𝑋)(𝐴𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cdif 3878  wss 3881  c0 4243  ifcif 4425   ciin 4882   class class class wbr 5030  cmpt 5110   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  Xcixp 8444  Fincfn 8492  cr 10525  -∞cmnf 10662  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12726  [,)cico 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-ioo 12730  df-ico 12732
This theorem is referenced by:  hoimbllem  43269
  Copyright terms: Public domain W3C validator