Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elinintab Structured version   Visualization version   GIF version

Theorem elinintab 43571
Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
elinintab (𝐴 ∈ (𝐵 {𝑥𝜑}) ↔ (𝐴𝐵 ∧ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elinintab
StepHypRef Expression
1 elin 3933 . 2 (𝐴 ∈ (𝐵 {𝑥𝜑}) ↔ (𝐴𝐵𝐴 {𝑥𝜑}))
2 elintabg 4924 . . 3 (𝐴𝐵 → (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥)))
32pm5.32i 574 . 2 ((𝐴𝐵𝐴 {𝑥𝜑}) ↔ (𝐴𝐵 ∧ ∀𝑥(𝜑𝐴𝑥)))
41, 3bitri 275 1 (𝐴 ∈ (𝐵 {𝑥𝜑}) ↔ (𝐴𝐵 ∧ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  {cab 2708  cin 3916   cint 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-in 3924  df-int 4914
This theorem is referenced by:  inintabss  43574  inintabd  43575  elcnvcnvintab  43578
  Copyright terms: Public domain W3C validator