| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elinintab | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
| Ref | Expression |
|---|---|
| elinintab | ⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3967 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ ∩ {𝑥 ∣ 𝜑})) | |
| 2 | elintabg 4957 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | |
| 3 | 2 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 {cab 2714 ∩ cin 3950 ∩ cint 4946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3482 df-in 3958 df-int 4947 |
| This theorem is referenced by: inintabss 43591 inintabd 43592 elcnvcnvintab 43595 |
| Copyright terms: Public domain | W3C validator |