Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elinintab Structured version   Visualization version   GIF version

Theorem elinintab 43530
Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
elinintab (𝐴 ∈ (𝐵 {𝑥𝜑}) ↔ (𝐴𝐵 ∧ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elinintab
StepHypRef Expression
1 elin 3979 . 2 (𝐴 ∈ (𝐵 {𝑥𝜑}) ↔ (𝐴𝐵𝐴 {𝑥𝜑}))
2 elintabg 4965 . . 3 (𝐴𝐵 → (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥)))
32pm5.32i 574 . 2 ((𝐴𝐵𝐴 {𝑥𝜑}) ↔ (𝐴𝐵 ∧ ∀𝑥(𝜑𝐴𝑥)))
41, 3bitri 275 1 (𝐴 ∈ (𝐵 {𝑥𝜑}) ↔ (𝐴𝐵 ∧ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1533  wcel 2104  {cab 2710  cin 3962   cint 4954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1538  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-ral 3058  df-v 3479  df-in 3970  df-int 4955
This theorem is referenced by:  inintabss  43533  inintabd  43534  elcnvcnvintab  43537
  Copyright terms: Public domain W3C validator