![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elinintab | Structured version Visualization version GIF version |
Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
Ref | Expression |
---|---|
elinintab | ⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3979 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ ∩ {𝑥 ∣ 𝜑})) | |
2 | elintabg 4965 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | |
3 | 2 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐴 ∈ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1533 ∈ wcel 2104 {cab 2710 ∩ cin 3962 ∩ cint 4954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1538 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-ral 3058 df-v 3479 df-in 3970 df-int 4955 |
This theorem is referenced by: inintabss 43533 inintabd 43534 elcnvcnvintab 43537 |
Copyright terms: Public domain | W3C validator |