Proof of Theorem elmapintrab
Step | Hyp | Ref
| Expression |
1 | | elintrabg 4892 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ∀𝑤 ∈ 𝒫 𝐵(∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤))) |
2 | | df-ral 3069 |
. . 3
⊢
(∀𝑤 ∈
𝒫 𝐵(∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤) ↔ ∀𝑤(𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤))) |
3 | 1, 2 | bitrdi 287 |
. 2
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ∀𝑤(𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)))) |
4 | | velpw 4538 |
. . . . . 6
⊢ (𝑤 ∈ 𝒫 𝐵 ↔ 𝑤 ⊆ 𝐵) |
5 | | 19.23v 1945 |
. . . . . . 7
⊢
(∀𝑥((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤) ↔ (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) |
6 | 5 | bicomi 223 |
. . . . . 6
⊢
((∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤) ↔ ∀𝑥((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) |
7 | 4, 6 | imbi12i 351 |
. . . . 5
⊢ ((𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ (𝑤 ⊆ 𝐵 → ∀𝑥((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤))) |
8 | | 19.21v 1942 |
. . . . 5
⊢
(∀𝑥(𝑤 ⊆ 𝐵 → ((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ (𝑤 ⊆ 𝐵 → ∀𝑥((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤))) |
9 | | bi2.04 389 |
. . . . . . 7
⊢ ((𝑤 ⊆ 𝐵 → ((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ ((𝑤 = 𝐶 ∧ 𝜑) → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) |
10 | | impexp 451 |
. . . . . . 7
⊢ (((𝑤 = 𝐶 ∧ 𝜑) → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)) ↔ (𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) |
11 | 9, 10 | bitri 274 |
. . . . . 6
⊢ ((𝑤 ⊆ 𝐵 → ((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ (𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) |
12 | 11 | albii 1822 |
. . . . 5
⊢
(∀𝑥(𝑤 ⊆ 𝐵 → ((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ ∀𝑥(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) |
13 | 7, 8, 12 | 3bitr2i 299 |
. . . 4
⊢ ((𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ ∀𝑥(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) |
14 | 13 | albii 1822 |
. . 3
⊢
(∀𝑤(𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ ∀𝑤∀𝑥(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) |
15 | | alcom 2156 |
. . 3
⊢
(∀𝑤∀𝑥(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) ↔ ∀𝑥∀𝑤(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) |
16 | | elmapintrab.ex |
. . . . . . 7
⊢ 𝐶 ∈ V |
17 | | sseq1 3946 |
. . . . . . . . 9
⊢ (𝑤 = 𝐶 → (𝑤 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) |
18 | | eleq2 2827 |
. . . . . . . . . 10
⊢ (𝑤 = 𝐶 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝐶)) |
19 | | elmapintrab.sub |
. . . . . . . . . . . 12
⊢ 𝐶 ⊆ 𝐵 |
20 | 19 | sseli 3917 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ 𝐵) |
21 | 20 | pm4.71ri 561 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
22 | 18, 21 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑤 = 𝐶 → (𝐴 ∈ 𝑤 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
23 | 17, 22 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑤 = 𝐶 → ((𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤) ↔ (𝐶 ⊆ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)))) |
24 | 23 | imbi2d 341 |
. . . . . . 7
⊢ (𝑤 = 𝐶 → ((𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)) ↔ (𝜑 → (𝐶 ⊆ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))))) |
25 | 16, 24 | ceqsalv 3467 |
. . . . . 6
⊢
(∀𝑤(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) ↔ (𝜑 → (𝐶 ⊆ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)))) |
26 | | bi2.04 389 |
. . . . . 6
⊢ ((𝜑 → (𝐶 ⊆ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) ↔ (𝐶 ⊆ 𝐵 → (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)))) |
27 | | pm5.5 362 |
. . . . . . . 8
⊢ (𝐶 ⊆ 𝐵 → ((𝐶 ⊆ 𝐵 → (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) ↔ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)))) |
28 | 19, 27 | ax-mp 5 |
. . . . . . 7
⊢ ((𝐶 ⊆ 𝐵 → (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) ↔ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) |
29 | | jcab 518 |
. . . . . . 7
⊢ ((𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) ↔ ((𝜑 → 𝐴 ∈ 𝐵) ∧ (𝜑 → 𝐴 ∈ 𝐶))) |
30 | 28, 29 | bitri 274 |
. . . . . 6
⊢ ((𝐶 ⊆ 𝐵 → (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) ↔ ((𝜑 → 𝐴 ∈ 𝐵) ∧ (𝜑 → 𝐴 ∈ 𝐶))) |
31 | 25, 26, 30 | 3bitri 297 |
. . . . 5
⊢
(∀𝑤(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) ↔ ((𝜑 → 𝐴 ∈ 𝐵) ∧ (𝜑 → 𝐴 ∈ 𝐶))) |
32 | 31 | albii 1822 |
. . . 4
⊢
(∀𝑥∀𝑤(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) ↔ ∀𝑥((𝜑 → 𝐴 ∈ 𝐵) ∧ (𝜑 → 𝐴 ∈ 𝐶))) |
33 | | 19.26 1873 |
. . . 4
⊢
(∀𝑥((𝜑 → 𝐴 ∈ 𝐵) ∧ (𝜑 → 𝐴 ∈ 𝐶)) ↔ (∀𝑥(𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶))) |
34 | | 19.23v 1945 |
. . . . 5
⊢
(∀𝑥(𝜑 → 𝐴 ∈ 𝐵) ↔ (∃𝑥𝜑 → 𝐴 ∈ 𝐵)) |
35 | 34 | anbi1i 624 |
. . . 4
⊢
((∀𝑥(𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶)) ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶))) |
36 | 32, 33, 35 | 3bitri 297 |
. . 3
⊢
(∀𝑥∀𝑤(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶))) |
37 | 14, 15, 36 | 3bitri 297 |
. 2
⊢
(∀𝑤(𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶))) |
38 | 3, 37 | bitrdi 287 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶)))) |