Proof of Theorem elmapintrab
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elintrabg 4960 | . . 3
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ∀𝑤 ∈ 𝒫 𝐵(∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤))) | 
| 2 |  | df-ral 3061 | . . 3
⊢
(∀𝑤 ∈
𝒫 𝐵(∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤) ↔ ∀𝑤(𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤))) | 
| 3 | 1, 2 | bitrdi 287 | . 2
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ∀𝑤(𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)))) | 
| 4 |  | velpw 4604 | . . . . . 6
⊢ (𝑤 ∈ 𝒫 𝐵 ↔ 𝑤 ⊆ 𝐵) | 
| 5 |  | 19.23v 1941 | . . . . . . 7
⊢
(∀𝑥((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤) ↔ (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) | 
| 6 | 5 | bicomi 224 | . . . . . 6
⊢
((∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤) ↔ ∀𝑥((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) | 
| 7 | 4, 6 | imbi12i 350 | . . . . 5
⊢ ((𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ (𝑤 ⊆ 𝐵 → ∀𝑥((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤))) | 
| 8 |  | 19.21v 1938 | . . . . 5
⊢
(∀𝑥(𝑤 ⊆ 𝐵 → ((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ (𝑤 ⊆ 𝐵 → ∀𝑥((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤))) | 
| 9 |  | bi2.04 387 | . . . . . . 7
⊢ ((𝑤 ⊆ 𝐵 → ((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ ((𝑤 = 𝐶 ∧ 𝜑) → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) | 
| 10 |  | impexp 450 | . . . . . . 7
⊢ (((𝑤 = 𝐶 ∧ 𝜑) → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)) ↔ (𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) | 
| 11 | 9, 10 | bitri 275 | . . . . . 6
⊢ ((𝑤 ⊆ 𝐵 → ((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ (𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) | 
| 12 | 11 | albii 1818 | . . . . 5
⊢
(∀𝑥(𝑤 ⊆ 𝐵 → ((𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ ∀𝑥(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) | 
| 13 | 7, 8, 12 | 3bitr2i 299 | . . . 4
⊢ ((𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ ∀𝑥(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) | 
| 14 | 13 | albii 1818 | . . 3
⊢
(∀𝑤(𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ ∀𝑤∀𝑥(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) | 
| 15 |  | alcom 2158 | . . 3
⊢
(∀𝑤∀𝑥(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) ↔ ∀𝑥∀𝑤(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)))) | 
| 16 |  | elmapintrab.ex | . . . . . . 7
⊢ 𝐶 ∈ V | 
| 17 |  | sseq1 4008 | . . . . . . . . 9
⊢ (𝑤 = 𝐶 → (𝑤 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) | 
| 18 |  | eleq2 2829 | . . . . . . . . . 10
⊢ (𝑤 = 𝐶 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝐶)) | 
| 19 |  | elmapintrab.sub | . . . . . . . . . . . 12
⊢ 𝐶 ⊆ 𝐵 | 
| 20 | 19 | sseli 3978 | . . . . . . . . . . 11
⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ 𝐵) | 
| 21 | 20 | pm4.71ri 560 | . . . . . . . . . 10
⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | 
| 22 | 18, 21 | bitrdi 287 | . . . . . . . . 9
⊢ (𝑤 = 𝐶 → (𝐴 ∈ 𝑤 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) | 
| 23 | 17, 22 | imbi12d 344 | . . . . . . . 8
⊢ (𝑤 = 𝐶 → ((𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤) ↔ (𝐶 ⊆ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)))) | 
| 24 | 23 | imbi2d 340 | . . . . . . 7
⊢ (𝑤 = 𝐶 → ((𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤)) ↔ (𝜑 → (𝐶 ⊆ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))))) | 
| 25 | 16, 24 | ceqsalv 3520 | . . . . . 6
⊢
(∀𝑤(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) ↔ (𝜑 → (𝐶 ⊆ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)))) | 
| 26 |  | bi2.04 387 | . . . . . 6
⊢ ((𝜑 → (𝐶 ⊆ 𝐵 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) ↔ (𝐶 ⊆ 𝐵 → (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)))) | 
| 27 |  | pm5.5 361 | . . . . . . . 8
⊢ (𝐶 ⊆ 𝐵 → ((𝐶 ⊆ 𝐵 → (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) ↔ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)))) | 
| 28 | 19, 27 | ax-mp 5 | . . . . . . 7
⊢ ((𝐶 ⊆ 𝐵 → (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) ↔ (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) | 
| 29 |  | jcab 517 | . . . . . . 7
⊢ ((𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) ↔ ((𝜑 → 𝐴 ∈ 𝐵) ∧ (𝜑 → 𝐴 ∈ 𝐶))) | 
| 30 | 28, 29 | bitri 275 | . . . . . 6
⊢ ((𝐶 ⊆ 𝐵 → (𝜑 → (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶))) ↔ ((𝜑 → 𝐴 ∈ 𝐵) ∧ (𝜑 → 𝐴 ∈ 𝐶))) | 
| 31 | 25, 26, 30 | 3bitri 297 | . . . . 5
⊢
(∀𝑤(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) ↔ ((𝜑 → 𝐴 ∈ 𝐵) ∧ (𝜑 → 𝐴 ∈ 𝐶))) | 
| 32 | 31 | albii 1818 | . . . 4
⊢
(∀𝑥∀𝑤(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) ↔ ∀𝑥((𝜑 → 𝐴 ∈ 𝐵) ∧ (𝜑 → 𝐴 ∈ 𝐶))) | 
| 33 |  | 19.26 1869 | . . . 4
⊢
(∀𝑥((𝜑 → 𝐴 ∈ 𝐵) ∧ (𝜑 → 𝐴 ∈ 𝐶)) ↔ (∀𝑥(𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶))) | 
| 34 |  | 19.23v 1941 | . . . . 5
⊢
(∀𝑥(𝜑 → 𝐴 ∈ 𝐵) ↔ (∃𝑥𝜑 → 𝐴 ∈ 𝐵)) | 
| 35 | 34 | anbi1i 624 | . . . 4
⊢
((∀𝑥(𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶)) ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶))) | 
| 36 | 32, 33, 35 | 3bitri 297 | . . 3
⊢
(∀𝑥∀𝑤(𝑤 = 𝐶 → (𝜑 → (𝑤 ⊆ 𝐵 → 𝐴 ∈ 𝑤))) ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶))) | 
| 37 | 14, 15, 36 | 3bitri 297 | . 2
⊢
(∀𝑤(𝑤 ∈ 𝒫 𝐵 → (∃𝑥(𝑤 = 𝐶 ∧ 𝜑) → 𝐴 ∈ 𝑤)) ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶))) | 
| 38 | 3, 37 | bitrdi 287 | 1
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = 𝐶 ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝐴 ∈ 𝐵) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐶)))) |