Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elintabg Structured version   Visualization version   GIF version

Theorem elintabg 41071
Description: Two ways of saying a set is an element of the intersection of a class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
elintabg (𝐴𝑉 → (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elintabg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elintg 4884 . 2 (𝐴𝑉 → (𝐴 {𝑥𝜑} ↔ ∀𝑦 ∈ {𝑥𝜑}𝐴𝑦))
2 eleq2w 2822 . . 3 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
32ralab2 3627 . 2 (∀𝑦 ∈ {𝑥𝜑}𝐴𝑦 ↔ ∀𝑥(𝜑𝐴𝑥))
41, 3bitrdi 286 1 (𝐴𝑉 → (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  {cab 2715  wral 3063   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-int 4877
This theorem is referenced by:  elinintab  41072
  Copyright terms: Public domain W3C validator