![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elintabg | Structured version Visualization version GIF version |
Description: Two ways of saying a set is an element of the intersection of a class. (Contributed by NM, 30-Aug-1993.) Put in closed form. (Revised by RP, 13-Aug-2020.) |
Ref | Expression |
---|---|
elintabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintg 4954 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ∈ 𝑦)) | |
2 | eleq2w 2810 | . . 3 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
3 | 2 | ralab2 3690 | . 2 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ∈ 𝑦 ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
4 | 1, 3 | bitrdi 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 ∈ wcel 2099 {cab 2703 ∀wral 3051 ∩ cint 4946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-int 4947 |
This theorem is referenced by: elintab 4958 intidg 5455 elinintab 43279 |
Copyright terms: Public domain | W3C validator |