![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elintabg | Structured version Visualization version GIF version |
Description: Two ways of saying a set is an element of the intersection of a class. (Contributed by NM, 30-Aug-1993.) Put in closed form. (Revised by RP, 13-Aug-2020.) |
Ref | Expression |
---|---|
elintabg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintg 4958 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ∈ 𝑦)) | |
2 | eleq2w 2816 | . . 3 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
3 | 2 | ralab2 3693 | . 2 ⊢ (∀𝑦 ∈ {𝑥 ∣ 𝜑}𝐴 ∈ 𝑦 ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
4 | 1, 3 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 ∈ wcel 2105 {cab 2708 ∀wral 3060 ∩ cint 4950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-int 4951 |
This theorem is referenced by: elintab 4962 intidg 5457 elinintab 42629 |
Copyright terms: Public domain | W3C validator |