| Step | Hyp | Ref
| Expression |
| 1 | | ancrb 547 |
. . 3
⊢ ((𝜑 → 𝑥 ∈ 𝐴) ↔ (𝜑 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 2 | 1 | albii 1819 |
. 2
⊢
(∀𝑥(𝜑 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝜑 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 3 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑦(𝜑 → (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | | nfsab1 2722 |
. . . 4
⊢
Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} |
| 5 | | nfrab1 3441 |
. . . . 5
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
| 6 | 5 | nfcri 2891 |
. . . 4
⊢
Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} |
| 7 | 4, 6 | nfim 1896 |
. . 3
⊢
Ⅎ𝑥(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| 8 | | abid 2718 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) |
| 9 | | eleq1w 2818 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 10 | 8, 9 | bitr3id 285 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 11 | | rabid 3442 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 12 | | eleq1w 2818 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 13 | 11, 12 | bitr3id 285 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 14 | 10, 13 | imbi12d 344 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝜑 → (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}))) |
| 15 | 3, 7, 14 | cbvalv1 2343 |
. 2
⊢
(∀𝑥(𝜑 → (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 16 | | eqss 3979 |
. . 3
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ 𝜑} ↔ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} ∧ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 17 | | rabssab 4065 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} |
| 18 | 17 | biantrur 530 |
. . 3
⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} ∧ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 19 | | df-ss 3948 |
. . 3
⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) |
| 20 | 16, 18, 19 | 3bitr2ri 300 |
. 2
⊢
(∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ 𝜑}) |
| 21 | 2, 15, 20 | 3bitri 297 |
1
⊢
(∀𝑥(𝜑 → 𝑥 ∈ 𝐴) ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ 𝜑}) |