Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rababg Structured version   Visualization version   GIF version

Theorem rababg 40260
Description: Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
rababg (∀𝑥(𝜑𝑥𝐴) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})

Proof of Theorem rababg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ancrb 551 . . 3 ((𝜑𝑥𝐴) ↔ (𝜑 → (𝑥𝐴𝜑)))
21albii 1821 . 2 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝜑 → (𝑥𝐴𝜑)))
3 nfv 1915 . . 3 𝑦(𝜑 → (𝑥𝐴𝜑))
4 nfsab1 2788 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
5 nfrab1 3340 . . . . 5 𝑥{𝑥𝐴𝜑}
65nfcri 2946 . . . 4 𝑥 𝑦 ∈ {𝑥𝐴𝜑}
74, 6nfim 1897 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑})
8 abid 2783 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 eleq1w 2875 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜑}))
108, 9bitr3id 288 . . . 4 (𝑥 = 𝑦 → (𝜑𝑦 ∈ {𝑥𝜑}))
11 rabid 3334 . . . . 5 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
12 eleq1w 2875 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝐴𝜑} ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
1311, 12bitr3id 288 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
1410, 13imbi12d 348 . . 3 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝐴𝜑)) ↔ (𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑})))
153, 7, 14cbvalv1 2353 . 2 (∀𝑥(𝜑 → (𝑥𝐴𝜑)) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}))
16 eqss 3933 . . 3 ({𝑥𝐴𝜑} = {𝑥𝜑} ↔ ({𝑥𝐴𝜑} ⊆ {𝑥𝜑} ∧ {𝑥𝜑} ⊆ {𝑥𝐴𝜑}))
17 rabssab 4014 . . . 4 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
1817biantrur 534 . . 3 ({𝑥𝜑} ⊆ {𝑥𝐴𝜑} ↔ ({𝑥𝐴𝜑} ⊆ {𝑥𝜑} ∧ {𝑥𝜑} ⊆ {𝑥𝐴𝜑}))
19 dfss2 3904 . . 3 ({𝑥𝜑} ⊆ {𝑥𝐴𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}))
2016, 18, 193bitr2ri 303 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})
212, 15, 203bitri 300 1 (∀𝑥(𝜑𝑥𝐴) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2112  {cab 2779  {crab 3113  wss 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-rab 3118  df-v 3446  df-in 3891  df-ss 3901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator