Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rababg Structured version   Visualization version   GIF version

Theorem rababg 42882
Description: Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
rababg (∀𝑥(𝜑𝑥𝐴) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})

Proof of Theorem rababg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ancrb 547 . . 3 ((𝜑𝑥𝐴) ↔ (𝜑 → (𝑥𝐴𝜑)))
21albii 1813 . 2 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝜑 → (𝑥𝐴𝜑)))
3 nfv 1909 . . 3 𝑦(𝜑 → (𝑥𝐴𝜑))
4 nfsab1 2711 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
5 nfrab1 3445 . . . . 5 𝑥{𝑥𝐴𝜑}
65nfcri 2884 . . . 4 𝑥 𝑦 ∈ {𝑥𝐴𝜑}
74, 6nfim 1891 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑})
8 abid 2707 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 eleq1w 2810 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜑}))
108, 9bitr3id 285 . . . 4 (𝑥 = 𝑦 → (𝜑𝑦 ∈ {𝑥𝜑}))
11 rabid 3446 . . . . 5 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
12 eleq1w 2810 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝐴𝜑} ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
1311, 12bitr3id 285 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
1410, 13imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝐴𝜑)) ↔ (𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑})))
153, 7, 14cbvalv1 2331 . 2 (∀𝑥(𝜑 → (𝑥𝐴𝜑)) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}))
16 eqss 3992 . . 3 ({𝑥𝐴𝜑} = {𝑥𝜑} ↔ ({𝑥𝐴𝜑} ⊆ {𝑥𝜑} ∧ {𝑥𝜑} ⊆ {𝑥𝐴𝜑}))
17 rabssab 4078 . . . 4 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
1817biantrur 530 . . 3 ({𝑥𝜑} ⊆ {𝑥𝐴𝜑} ↔ ({𝑥𝐴𝜑} ⊆ {𝑥𝜑} ∧ {𝑥𝜑} ⊆ {𝑥𝐴𝜑}))
19 dfss2 3963 . . 3 ({𝑥𝜑} ⊆ {𝑥𝐴𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}))
2016, 18, 193bitr2ri 300 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})
212, 15, 203bitri 297 1 (∀𝑥(𝜑𝑥𝐴) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531   = wceq 1533  wcel 2098  {cab 2703  {crab 3426  wss 3943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-rab 3427  df-v 3470  df-in 3950  df-ss 3960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator