Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rababg Structured version   Visualization version   GIF version

Theorem rababg 40798
Description: Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
rababg (∀𝑥(𝜑𝑥𝐴) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})

Proof of Theorem rababg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ancrb 551 . . 3 ((𝜑𝑥𝐴) ↔ (𝜑 → (𝑥𝐴𝜑)))
21albii 1827 . 2 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝜑 → (𝑥𝐴𝜑)))
3 nfv 1922 . . 3 𝑦(𝜑 → (𝑥𝐴𝜑))
4 nfsab1 2723 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
5 nfrab1 3286 . . . . 5 𝑥{𝑥𝐴𝜑}
65nfcri 2884 . . . 4 𝑥 𝑦 ∈ {𝑥𝐴𝜑}
74, 6nfim 1904 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑})
8 abid 2718 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 eleq1w 2813 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜑}))
108, 9bitr3id 288 . . . 4 (𝑥 = 𝑦 → (𝜑𝑦 ∈ {𝑥𝜑}))
11 rabid 3280 . . . . 5 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
12 eleq1w 2813 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝐴𝜑} ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
1311, 12bitr3id 288 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
1410, 13imbi12d 348 . . 3 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝐴𝜑)) ↔ (𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑})))
153, 7, 14cbvalv1 2342 . 2 (∀𝑥(𝜑 → (𝑥𝐴𝜑)) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}))
16 eqss 3902 . . 3 ({𝑥𝐴𝜑} = {𝑥𝜑} ↔ ({𝑥𝐴𝜑} ⊆ {𝑥𝜑} ∧ {𝑥𝜑} ⊆ {𝑥𝐴𝜑}))
17 rabssab 3984 . . . 4 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
1817biantrur 534 . . 3 ({𝑥𝜑} ⊆ {𝑥𝐴𝜑} ↔ ({𝑥𝐴𝜑} ⊆ {𝑥𝜑} ∧ {𝑥𝜑} ⊆ {𝑥𝐴𝜑}))
19 dfss2 3873 . . 3 ({𝑥𝜑} ⊆ {𝑥𝐴𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}))
2016, 18, 193bitr2ri 303 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})
212, 15, 203bitri 300 1 (∀𝑥(𝜑𝑥𝐴) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1541   = wceq 1543  wcel 2112  {cab 2714  {crab 3055  wss 3853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-rab 3060  df-v 3400  df-in 3860  df-ss 3870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator