Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rababg Structured version   Visualization version   GIF version

Theorem rababg 39295
Description: Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
rababg (∀𝑥(𝜑𝑥𝐴) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})

Proof of Theorem rababg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ancrb 540 . . 3 ((𝜑𝑥𝐴) ↔ (𝜑 → (𝑥𝐴𝜑)))
21albii 1782 . 2 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝜑 → (𝑥𝐴𝜑)))
3 nfv 1873 . . 3 𝑦(𝜑 → (𝑥𝐴𝜑))
4 nfsab1 2761 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
5 nfrab1 3318 . . . . 5 𝑥{𝑥𝐴𝜑}
65nfcri 2920 . . . 4 𝑥 𝑦 ∈ {𝑥𝐴𝜑}
74, 6nfim 1859 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑})
8 abid 2756 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 eleq1w 2842 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜑}))
108, 9syl5bbr 277 . . . 4 (𝑥 = 𝑦 → (𝜑𝑦 ∈ {𝑥𝜑}))
11 rabid 3311 . . . . 5 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
12 eleq1w 2842 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝐴𝜑} ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
1311, 12syl5bbr 277 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
1410, 13imbi12d 337 . . 3 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝐴𝜑)) ↔ (𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑})))
153, 7, 14cbvalv1 2277 . 2 (∀𝑥(𝜑 → (𝑥𝐴𝜑)) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}))
16 eqss 3867 . . 3 ({𝑥𝐴𝜑} = {𝑥𝜑} ↔ ({𝑥𝐴𝜑} ⊆ {𝑥𝜑} ∧ {𝑥𝜑} ⊆ {𝑥𝐴𝜑}))
17 rabssab 3944 . . . 4 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
1817biantrur 523 . . 3 ({𝑥𝜑} ⊆ {𝑥𝐴𝜑} ↔ ({𝑥𝐴𝜑} ⊆ {𝑥𝜑} ∧ {𝑥𝜑} ⊆ {𝑥𝐴𝜑}))
19 dfss2 3840 . . 3 ({𝑥𝜑} ⊆ {𝑥𝐴𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}))
2016, 18, 193bitr2ri 292 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})
212, 15, 203bitri 289 1 (∀𝑥(𝜑𝑥𝐴) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wal 1505   = wceq 1507  wcel 2050  {cab 2752  {crab 3086  wss 3823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-ext 2744
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-rab 3091  df-in 3830  df-ss 3837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator