Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inintabd Structured version   Visualization version   GIF version

Theorem inintabd 42796
Description: Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.)
Hypothesis
Ref Expression
inintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
inintabd (𝜑 → (𝐴 {𝑥𝜓}) = {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem inintabd
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 inintabd.x . . . . . 6 (𝜑 → ∃𝑥𝜓)
2 pm5.5 361 . . . . . 6 (∃𝑥𝜓 → ((∃𝑥𝜓𝑢𝐴) ↔ 𝑢𝐴))
31, 2syl 17 . . . . 5 (𝜑 → ((∃𝑥𝜓𝑢𝐴) ↔ 𝑢𝐴))
43bicomd 222 . . . 4 (𝜑 → (𝑢𝐴 ↔ (∃𝑥𝜓𝑢𝐴)))
54anbi1d 629 . . 3 (𝜑 → ((𝑢𝐴 ∧ ∀𝑥(𝜓𝑢𝑥)) ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥))))
6 elinintab 42792 . . 3 (𝑢 ∈ (𝐴 {𝑥𝜓}) ↔ (𝑢𝐴 ∧ ∀𝑥(𝜓𝑢𝑥)))
7 elinintrab 42794 . . . 4 (𝑢 ∈ V → (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥))))
87elv 3479 . . 3 (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥)))
95, 6, 83bitr4g 314 . 2 (𝜑 → (𝑢 ∈ (𝐴 {𝑥𝜓}) ↔ 𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)}))
109eqrdv 2729 1 (𝜑 → (𝐴 {𝑥𝜓}) = {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wex 1780  wcel 2105  {cab 2708  {crab 3431  Vcvv 3473  cin 3947  𝒫 cpw 4602   cint 4950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-in 3955  df-ss 3965  df-pw 4604  df-int 4951
This theorem is referenced by:  xpinintabd  42797
  Copyright terms: Public domain W3C validator