![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inintabd | Structured version Visualization version GIF version |
Description: Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.) |
Ref | Expression |
---|---|
inintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
inintabd | ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inintabd.x | . . . . . 6 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | pm5.5 361 | . . . . . 6 ⊢ (∃𝑥𝜓 → ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ↔ 𝑢 ∈ 𝐴)) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ↔ 𝑢 ∈ 𝐴)) |
4 | 3 | bicomd 222 | . . . 4 ⊢ (𝜑 → (𝑢 ∈ 𝐴 ↔ (∃𝑥𝜓 → 𝑢 ∈ 𝐴))) |
5 | 4 | anbi1d 630 | . . 3 ⊢ (𝜑 → ((𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)) ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)))) |
6 | elinintab 42311 | . . 3 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) ↔ (𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥))) | |
7 | elinintrab 42313 | . . . 4 ⊢ (𝑢 ∈ V → (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)))) | |
8 | 7 | elv 3480 | . . 3 ⊢ (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥))) |
9 | 5, 6, 8 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) ↔ 𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)})) |
10 | 9 | eqrdv 2730 | 1 ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 {crab 3432 Vcvv 3474 ∩ cin 3946 𝒫 cpw 4601 ∩ cint 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-in 3954 df-ss 3964 df-pw 4603 df-int 4950 |
This theorem is referenced by: xpinintabd 42316 |
Copyright terms: Public domain | W3C validator |