![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inintabd | Structured version Visualization version GIF version |
Description: Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.) |
Ref | Expression |
---|---|
inintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
inintabd | ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inintabd.x | . . . . . 6 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | pm5.5 361 | . . . . . 6 ⊢ (∃𝑥𝜓 → ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ↔ 𝑢 ∈ 𝐴)) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ↔ 𝑢 ∈ 𝐴)) |
4 | 3 | bicomd 223 | . . . 4 ⊢ (𝜑 → (𝑢 ∈ 𝐴 ↔ (∃𝑥𝜓 → 𝑢 ∈ 𝐴))) |
5 | 4 | anbi1d 631 | . . 3 ⊢ (𝜑 → ((𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)) ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)))) |
6 | elinintab 43565 | . . 3 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) ↔ (𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥))) | |
7 | elinintrab 43567 | . . . 4 ⊢ (𝑢 ∈ V → (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)))) | |
8 | 7 | elv 3483 | . . 3 ⊢ (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥))) |
9 | 5, 6, 8 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) ↔ 𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)})) |
10 | 9 | eqrdv 2733 | 1 ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 {crab 3433 Vcvv 3478 ∩ cin 3962 𝒫 cpw 4605 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 df-pw 4607 df-int 4952 |
This theorem is referenced by: xpinintabd 43570 |
Copyright terms: Public domain | W3C validator |