![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inintabd | Structured version Visualization version GIF version |
Description: Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.) |
Ref | Expression |
---|---|
inintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) |
Ref | Expression |
---|---|
inintabd | ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inintabd.x | . . . . . 6 ⊢ (𝜑 → ∃𝑥𝜓) | |
2 | pm5.5 360 | . . . . . 6 ⊢ (∃𝑥𝜓 → ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ↔ 𝑢 ∈ 𝐴)) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ↔ 𝑢 ∈ 𝐴)) |
4 | 3 | bicomd 222 | . . . 4 ⊢ (𝜑 → (𝑢 ∈ 𝐴 ↔ (∃𝑥𝜓 → 𝑢 ∈ 𝐴))) |
5 | 4 | anbi1d 629 | . . 3 ⊢ (𝜑 → ((𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)) ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)))) |
6 | elinintab 43008 | . . 3 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) ↔ (𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥))) | |
7 | elinintrab 43010 | . . . 4 ⊢ (𝑢 ∈ V → (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)))) | |
8 | 7 | elv 3477 | . . 3 ⊢ (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥))) |
9 | 5, 6, 8 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) ↔ 𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)})) |
10 | 9 | eqrdv 2725 | 1 ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2704 {crab 3428 Vcvv 3471 ∩ cin 3946 𝒫 cpw 4604 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-in 3954 df-ss 3964 df-pw 4606 df-int 4952 |
This theorem is referenced by: xpinintabd 43013 |
Copyright terms: Public domain | W3C validator |