|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inintabd | Structured version Visualization version GIF version | ||
| Description: Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| inintabd.x | ⊢ (𝜑 → ∃𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| inintabd | ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inintabd.x | . . . . . 6 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | pm5.5 361 | . . . . . 6 ⊢ (∃𝑥𝜓 → ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ↔ 𝑢 ∈ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ↔ 𝑢 ∈ 𝐴)) | 
| 4 | 3 | bicomd 223 | . . . 4 ⊢ (𝜑 → (𝑢 ∈ 𝐴 ↔ (∃𝑥𝜓 → 𝑢 ∈ 𝐴))) | 
| 5 | 4 | anbi1d 631 | . . 3 ⊢ (𝜑 → ((𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)) ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)))) | 
| 6 | elinintab 43588 | . . 3 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) ↔ (𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥))) | |
| 7 | elinintrab 43590 | . . . 4 ⊢ (𝑢 ∈ V → (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥)))) | |
| 8 | 7 | elv 3485 | . . 3 ⊢ (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜓 → 𝑢 ∈ 𝑥))) | 
| 9 | 5, 6, 8 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) ↔ 𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)})) | 
| 10 | 9 | eqrdv 2735 | 1 ⊢ (𝜑 → (𝐴 ∩ ∩ {𝑥 ∣ 𝜓}) = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜓)}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 {crab 3436 Vcvv 3480 ∩ cin 3950 𝒫 cpw 4600 ∩ cint 4946 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-in 3958 df-ss 3968 df-pw 4602 df-int 4947 | 
| This theorem is referenced by: xpinintabd 43593 | 
| Copyright terms: Public domain | W3C validator |