Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inintabd Structured version   Visualization version   GIF version

Theorem inintabd 42315
Description: Value of the intersection of class with the intersection of a nonempty class. (Contributed by RP, 13-Aug-2020.)
Hypothesis
Ref Expression
inintabd.x (𝜑 → ∃𝑥𝜓)
Assertion
Ref Expression
inintabd (𝜑 → (𝐴 {𝑥𝜓}) = {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)})
Distinct variable groups:   𝜓,𝑤   𝑥,𝑤,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝜓(𝑥)

Proof of Theorem inintabd
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 inintabd.x . . . . . 6 (𝜑 → ∃𝑥𝜓)
2 pm5.5 361 . . . . . 6 (∃𝑥𝜓 → ((∃𝑥𝜓𝑢𝐴) ↔ 𝑢𝐴))
31, 2syl 17 . . . . 5 (𝜑 → ((∃𝑥𝜓𝑢𝐴) ↔ 𝑢𝐴))
43bicomd 222 . . . 4 (𝜑 → (𝑢𝐴 ↔ (∃𝑥𝜓𝑢𝐴)))
54anbi1d 630 . . 3 (𝜑 → ((𝑢𝐴 ∧ ∀𝑥(𝜓𝑢𝑥)) ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥))))
6 elinintab 42311 . . 3 (𝑢 ∈ (𝐴 {𝑥𝜓}) ↔ (𝑢𝐴 ∧ ∀𝑥(𝜓𝑢𝑥)))
7 elinintrab 42313 . . . 4 (𝑢 ∈ V → (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥))))
87elv 3480 . . 3 (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)} ↔ ((∃𝑥𝜓𝑢𝐴) ∧ ∀𝑥(𝜓𝑢𝑥)))
95, 6, 83bitr4g 313 . 2 (𝜑 → (𝑢 ∈ (𝐴 {𝑥𝜓}) ↔ 𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)}))
109eqrdv 2730 1 (𝜑 → (𝐴 {𝑥𝜓}) = {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜓)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wex 1781  wcel 2106  {cab 2709  {crab 3432  Vcvv 3474  cin 3946  𝒫 cpw 4601   cint 4949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-in 3954  df-ss 3964  df-pw 4603  df-int 4950
This theorem is referenced by:  xpinintabd  42316
  Copyright terms: Public domain W3C validator