Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inintabss Structured version   Visualization version   GIF version

Theorem inintabss 43735
Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
inintabss (𝐴 {𝑥𝜑}) ⊆ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜑)}
Distinct variable groups:   𝜑,𝑤   𝑥,𝑤,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem inintabss
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . . . 4 (𝑢𝐴 → (∃𝑥𝜑𝑢𝐴))
21anim1i 615 . . 3 ((𝑢𝐴 ∧ ∀𝑥(𝜑𝑢𝑥)) → ((∃𝑥𝜑𝑢𝐴) ∧ ∀𝑥(𝜑𝑢𝑥)))
3 elinintab 43732 . . 3 (𝑢 ∈ (𝐴 {𝑥𝜑}) ↔ (𝑢𝐴 ∧ ∀𝑥(𝜑𝑢𝑥)))
4 elinintrab 43734 . . . 4 (𝑢 ∈ V → (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝑢𝐴) ∧ ∀𝑥(𝜑𝑢𝑥))))
54elv 3442 . . 3 (𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝑢𝐴) ∧ ∀𝑥(𝜑𝑢𝑥)))
62, 3, 53imtr4i 292 . 2 (𝑢 ∈ (𝐴 {𝑥𝜑}) → 𝑢 {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜑)})
76ssriv 3934 1 (𝐴 {𝑥𝜑}) ⊆ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴𝑥) ∧ 𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2113  {cab 2711  {crab 3396  Vcvv 3437  cin 3897  wss 3898  𝒫 cpw 4551   cint 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-in 3905  df-ss 3915  df-pw 4553  df-int 4900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator