![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inintabss | Structured version Visualization version GIF version |
Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
Ref | Expression |
---|---|
inintabss | ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . . 4 ⊢ (𝑢 ∈ 𝐴 → (∃𝑥𝜑 → 𝑢 ∈ 𝐴)) | |
2 | 1 | anim1i 614 | . . 3 ⊢ ((𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥)) → ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) |
3 | elinintab 43537 | . . 3 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) | |
4 | elinintrab 43539 | . . . 4 ⊢ (𝑢 ∈ V → (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥)))) | |
5 | 4 | elv 3493 | . . 3 ⊢ (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) |
6 | 2, 3, 5 | 3imtr4i 292 | . 2 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) → 𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)}) |
7 | 6 | ssriv 4012 | 1 ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 df-int 4971 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |