Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inintabss | Structured version Visualization version GIF version |
Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
Ref | Expression |
---|---|
inintabss | ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . . 4 ⊢ (𝑢 ∈ 𝐴 → (∃𝑥𝜑 → 𝑢 ∈ 𝐴)) | |
2 | 1 | anim1i 616 | . . 3 ⊢ ((𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥)) → ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) |
3 | elinintab 41221 | . . 3 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) | |
4 | elinintrab 41223 | . . . 4 ⊢ (𝑢 ∈ V → (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥)))) | |
5 | 4 | elv 3443 | . . 3 ⊢ (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) |
6 | 2, 3, 5 | 3imtr4i 292 | . 2 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) → 𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)}) |
7 | 6 | ssriv 3930 | 1 ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2713 {crab 3284 Vcvv 3437 ∩ cin 3891 ⊆ wss 3892 𝒫 cpw 4539 ∩ cint 4886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rab 3287 df-v 3439 df-in 3899 df-ss 3909 df-pw 4541 df-int 4887 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |