Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > inintabss | Structured version Visualization version GIF version |
Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
Ref | Expression |
---|---|
inintabss | ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . . 4 ⊢ (𝑢 ∈ 𝐴 → (∃𝑥𝜑 → 𝑢 ∈ 𝐴)) | |
2 | 1 | anim1i 614 | . . 3 ⊢ ((𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥)) → ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) |
3 | elinintab 41136 | . . 3 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) | |
4 | elinintrab 41138 | . . . 4 ⊢ (𝑢 ∈ V → (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥)))) | |
5 | 4 | elv 3436 | . . 3 ⊢ (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) |
6 | 2, 3, 5 | 3imtr4i 291 | . 2 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) → 𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)}) |
7 | 6 | ssriv 3929 | 1 ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1785 ∈ wcel 2109 {cab 2716 {crab 3069 Vcvv 3430 ∩ cin 3890 ⊆ wss 3891 𝒫 cpw 4538 ∩ cint 4884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-v 3432 df-in 3898 df-ss 3908 df-pw 4540 df-int 4885 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |