|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inintabss | Structured version Visualization version GIF version | ||
| Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| inintabss | ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1 6 | . . . 4 ⊢ (𝑢 ∈ 𝐴 → (∃𝑥𝜑 → 𝑢 ∈ 𝐴)) | |
| 2 | 1 | anim1i 615 | . . 3 ⊢ ((𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥)) → ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) | 
| 3 | elinintab 43588 | . . 3 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) | |
| 4 | elinintrab 43590 | . . . 4 ⊢ (𝑢 ∈ V → (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥)))) | |
| 5 | 4 | elv 3485 | . . 3 ⊢ (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) | 
| 6 | 2, 3, 5 | 3imtr4i 292 | . 2 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) → 𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)}) | 
| 7 | 6 | ssriv 3987 | 1 ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2714 {crab 3436 Vcvv 3480 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 ∩ cint 4946 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-in 3958 df-ss 3968 df-pw 4602 df-int 4947 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |