| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > inintabss | Structured version Visualization version GIF version | ||
| Description: Upper bound on intersection of class and the intersection of a class. (Contributed by RP, 13-Aug-2020.) |
| Ref | Expression |
|---|---|
| inintabss | ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 | . . . 4 ⊢ (𝑢 ∈ 𝐴 → (∃𝑥𝜑 → 𝑢 ∈ 𝐴)) | |
| 2 | 1 | anim1i 615 | . . 3 ⊢ ((𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥)) → ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) |
| 3 | elinintab 43531 | . . 3 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝑢 ∈ 𝐴 ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) | |
| 4 | elinintrab 43533 | . . . 4 ⊢ (𝑢 ∈ V → (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥)))) | |
| 5 | 4 | elv 3462 | . . 3 ⊢ (𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑 → 𝑢 ∈ 𝐴) ∧ ∀𝑥(𝜑 → 𝑢 ∈ 𝑥))) |
| 6 | 2, 3, 5 | 3imtr4i 292 | . 2 ⊢ (𝑢 ∈ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) → 𝑢 ∈ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)}) |
| 7 | 6 | ssriv 3960 | 1 ⊢ (𝐴 ∩ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑤 ∈ 𝒫 𝐴 ∣ ∃𝑥(𝑤 = (𝐴 ∩ 𝑥) ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 {crab 3413 Vcvv 3457 ∩ cin 3923 ⊆ wss 3924 𝒫 cpw 4573 ∩ cint 4920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-in 3931 df-ss 3941 df-pw 4575 df-int 4921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |