Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvcnvintab Structured version   Visualization version   GIF version

Theorem elcnvcnvintab 43606
Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.)
Assertion
Ref Expression
elcnvcnvintab (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elcnvcnvintab
StepHypRef Expression
1 cnvcnv 6181 . . . 4 {𝑥𝜑} = ( {𝑥𝜑} ∩ (V × V))
2 incom 4184 . . . 4 ( {𝑥𝜑} ∩ (V × V)) = ((V × V) ∩ {𝑥𝜑})
31, 2eqtri 2758 . . 3 {𝑥𝜑} = ((V × V) ∩ {𝑥𝜑})
43eleq2i 2826 . 2 (𝐴 {𝑥𝜑} ↔ 𝐴 ∈ ((V × V) ∩ {𝑥𝜑}))
5 elinintab 43599 . 2 (𝐴 ∈ ((V × V) ∩ {𝑥𝜑}) ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
64, 5bitri 275 1 (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2108  {cab 2713  Vcvv 3459  cin 3925   cint 4922   × cxp 5652  ccnv 5653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-int 4923  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662
This theorem is referenced by:  cnvcnvintabd  43624
  Copyright terms: Public domain W3C validator