Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvcnvintab Structured version   Visualization version   GIF version

Theorem elcnvcnvintab 40198
Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.)
Assertion
Ref Expression
elcnvcnvintab (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elcnvcnvintab
StepHypRef Expression
1 cnvcnv 6036 . . . 4 {𝑥𝜑} = ( {𝑥𝜑} ∩ (V × V))
2 incom 4163 . . . 4 ( {𝑥𝜑} ∩ (V × V)) = ((V × V) ∩ {𝑥𝜑})
31, 2eqtri 2847 . . 3 {𝑥𝜑} = ((V × V) ∩ {𝑥𝜑})
43eleq2i 2907 . 2 (𝐴 {𝑥𝜑} ↔ 𝐴 ∈ ((V × V) ∩ {𝑥𝜑}))
5 elinintab 40191 . 2 (𝐴 ∈ ((V × V) ∩ {𝑥𝜑}) ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
64, 5bitri 278 1 (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536  wcel 2115  {cab 2802  Vcvv 3480  cin 3918   cint 4862   × cxp 5540  ccnv 5541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rab 3142  df-v 3482  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-int 4863  df-br 5053  df-opab 5115  df-xp 5548  df-rel 5549  df-cnv 5550
This theorem is referenced by:  cnvcnvintabd  40216
  Copyright terms: Public domain W3C validator