| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvcnvintab | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.) |
| Ref | Expression |
|---|---|
| elcnvcnvintab | ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv 6168 | . . . 4 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) | |
| 2 | incom 4175 | . . . 4 ⊢ (∩ {𝑥 ∣ 𝜑} ∩ (V × V)) = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | eqtri 2753 | . . 3 ⊢ ◡◡∩ {𝑥 ∣ 𝜑} = ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) |
| 4 | 3 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ ((V × V) ∩ ∩ {𝑥 ∣ 𝜑})) |
| 5 | elinintab 43571 | . 2 ⊢ (𝐴 ∈ ((V × V) ∩ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | |
| 6 | 4, 5 | bitri 275 | 1 ⊢ (𝐴 ∈ ◡◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2708 Vcvv 3450 ∩ cin 3916 ∩ cint 4913 × cxp 5639 ◡ccnv 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-int 4914 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 |
| This theorem is referenced by: cnvcnvintabd 43596 |
| Copyright terms: Public domain | W3C validator |