Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvcnvintab Structured version   Visualization version   GIF version

Theorem elcnvcnvintab 43685
Description: Two ways of saying a set is an element of the converse of the converse of the intersection of a class. (Contributed by RP, 20-Aug-2020.)
Assertion
Ref Expression
elcnvcnvintab (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elcnvcnvintab
StepHypRef Expression
1 cnvcnv 6139 . . . 4 {𝑥𝜑} = ( {𝑥𝜑} ∩ (V × V))
2 incom 4156 . . . 4 ( {𝑥𝜑} ∩ (V × V)) = ((V × V) ∩ {𝑥𝜑})
31, 2eqtri 2754 . . 3 {𝑥𝜑} = ((V × V) ∩ {𝑥𝜑})
43eleq2i 2823 . 2 (𝐴 {𝑥𝜑} ↔ 𝐴 ∈ ((V × V) ∩ {𝑥𝜑}))
5 elinintab 43678 . 2 (𝐴 ∈ ((V × V) ∩ {𝑥𝜑}) ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
64, 5bitri 275 1 (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wcel 2111  {cab 2709  Vcvv 3436  cin 3896   cint 4895   × cxp 5612  ccnv 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-int 4896  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622
This theorem is referenced by:  cnvcnvintabd  43703
  Copyright terms: Public domain W3C validator