![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intidg | Structured version Visualization version GIF version |
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) Put in closed form and avoid ax-nul 5307. (Revised by BJ, 17-Jan-2025.) |
Ref | Expression |
---|---|
intidg | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexg 5431 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
2 | snidg 4663 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
3 | eleq2 2820 | . . . 4 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
4 | 1, 2, 3 | elabd 3672 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ {𝑥 ∣ 𝐴 ∈ 𝑥}) |
5 | intss1 4968 | . . 3 ⊢ ({𝐴} ∈ {𝑥 ∣ 𝐴 ∈ 𝑥} → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) |
7 | id 22 | . . . . 5 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | |
8 | 7 | ax-gen 1795 | . . . 4 ⊢ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) |
9 | elintabg 4962 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥))) | |
10 | 8, 9 | mpbiri 257 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) |
11 | 10 | snssd 4813 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) |
12 | 6, 11 | eqssd 4000 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2104 {cab 2707 Vcvv 3472 ⊆ wss 3949 {csn 4629 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-v 3474 df-un 3954 df-in 3956 df-ss 3966 df-sn 4630 df-pr 4632 df-int 4952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |