| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intidg | Structured version Visualization version GIF version | ||
| Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) Put in closed form and avoid ax-nul 5306. (Revised by BJ, 17-Jan-2025.) |
| Ref | Expression |
|---|---|
| intidg | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg 5435 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
| 2 | snidg 4660 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 3 | eleq2 2830 | . . . 4 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
| 4 | 1, 2, 3 | elabd 3681 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ {𝑥 ∣ 𝐴 ∈ 𝑥}) |
| 5 | intss1 4963 | . . 3 ⊢ ({𝐴} ∈ {𝑥 ∣ 𝐴 ∈ 𝑥} → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) |
| 7 | id 22 | . . . . 5 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | |
| 8 | 7 | ax-gen 1795 | . . . 4 ⊢ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) |
| 9 | elintabg 4957 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥))) | |
| 10 | 8, 9 | mpbiri 258 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) |
| 11 | 10 | snssd 4809 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) |
| 12 | 6, 11 | eqssd 4001 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2714 Vcvv 3480 ⊆ wss 3951 {csn 4626 ∩ cint 4946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3482 df-un 3956 df-ss 3968 df-sn 4627 df-pr 4629 df-int 4947 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |