![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intidg | Structured version Visualization version GIF version |
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) Put in closed form and avoid ax-nul 5312. (Revised by BJ, 17-Jan-2025.) |
Ref | Expression |
---|---|
intidg | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexg 5441 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
2 | snidg 4665 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
3 | eleq2 2828 | . . . 4 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
4 | 1, 2, 3 | elabd 3684 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ {𝑥 ∣ 𝐴 ∈ 𝑥}) |
5 | intss1 4968 | . . 3 ⊢ ({𝐴} ∈ {𝑥 ∣ 𝐴 ∈ 𝑥} → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ⊆ {𝐴}) |
7 | id 22 | . . . . 5 ⊢ (𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) | |
8 | 7 | ax-gen 1792 | . . . 4 ⊢ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥) |
9 | elintabg 4962 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} ↔ ∀𝑥(𝐴 ∈ 𝑥 → 𝐴 ∈ 𝑥))) | |
10 | 8, 9 | mpbiri 258 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) |
11 | 10 | snssd 4814 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ⊆ ∩ {𝑥 ∣ 𝐴 ∈ 𝑥}) |
12 | 6, 11 | eqssd 4013 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝐴 ∈ 𝑥} = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 ⊆ wss 3963 {csn 4631 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-v 3480 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-int 4952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |