MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intidg Structured version   Visualization version   GIF version

Theorem intidg 5458
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) Put in closed form and avoid ax-nul 5307. (Revised by BJ, 17-Jan-2025.)
Assertion
Ref Expression
intidg (𝐴𝑉 {𝑥𝐴𝑥} = {𝐴})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem intidg
StepHypRef Expression
1 snexg 5431 . . . 4 (𝐴𝑉 → {𝐴} ∈ V)
2 snidg 4663 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴})
3 eleq2 2820 . . . 4 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
41, 2, 3elabd 3672 . . 3 (𝐴𝑉 → {𝐴} ∈ {𝑥𝐴𝑥})
5 intss1 4968 . . 3 ({𝐴} ∈ {𝑥𝐴𝑥} → {𝑥𝐴𝑥} ⊆ {𝐴})
64, 5syl 17 . 2 (𝐴𝑉 {𝑥𝐴𝑥} ⊆ {𝐴})
7 id 22 . . . . 5 (𝐴𝑥𝐴𝑥)
87ax-gen 1795 . . . 4 𝑥(𝐴𝑥𝐴𝑥)
9 elintabg 4962 . . . 4 (𝐴𝑉 → (𝐴 {𝑥𝐴𝑥} ↔ ∀𝑥(𝐴𝑥𝐴𝑥)))
108, 9mpbiri 257 . . 3 (𝐴𝑉𝐴 {𝑥𝐴𝑥})
1110snssd 4813 . 2 (𝐴𝑉 → {𝐴} ⊆ {𝑥𝐴𝑥})
126, 11eqssd 4000 1 (𝐴𝑉 {𝑥𝐴𝑥} = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537   = wceq 1539  wcel 2104  {cab 2707  Vcvv 3472  wss 3949  {csn 4629   cint 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-v 3474  df-un 3954  df-in 3956  df-ss 3966  df-sn 4630  df-pr 4632  df-int 4952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator