MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intidg Structured version   Visualization version   GIF version

Theorem intidg 5400
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) Put in closed form and avoid ax-nul 5246. (Revised by BJ, 17-Jan-2025.)
Assertion
Ref Expression
intidg (𝐴𝑉 {𝑥𝐴𝑥} = {𝐴})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem intidg
StepHypRef Expression
1 snexg 5375 . . . 4 (𝐴𝑉 → {𝐴} ∈ V)
2 snidg 4612 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴})
3 eleq2 2822 . . . 4 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
41, 2, 3elabd 3633 . . 3 (𝐴𝑉 → {𝐴} ∈ {𝑥𝐴𝑥})
5 intss1 4913 . . 3 ({𝐴} ∈ {𝑥𝐴𝑥} → {𝑥𝐴𝑥} ⊆ {𝐴})
64, 5syl 17 . 2 (𝐴𝑉 {𝑥𝐴𝑥} ⊆ {𝐴})
7 id 22 . . . . 5 (𝐴𝑥𝐴𝑥)
87ax-gen 1796 . . . 4 𝑥(𝐴𝑥𝐴𝑥)
9 elintabg 4908 . . . 4 (𝐴𝑉 → (𝐴 {𝑥𝐴𝑥} ↔ ∀𝑥(𝐴𝑥𝐴𝑥)))
108, 9mpbiri 258 . . 3 (𝐴𝑉𝐴 {𝑥𝐴𝑥})
1110snssd 4760 . 2 (𝐴𝑉 → {𝐴} ⊆ {𝑥𝐴𝑥})
126, 11eqssd 3948 1 (𝐴𝑉 {𝑥𝐴𝑥} = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wcel 2113  {cab 2711  Vcvv 3437  wss 3898  {csn 4575   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-un 3903  df-ss 3915  df-sn 4576  df-pr 4578  df-int 4898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator