MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intidg Structured version   Visualization version   GIF version

Theorem intidg 5417
Description: The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.) Put in closed form and avoid ax-nul 5261. (Revised by BJ, 17-Jan-2025.)
Assertion
Ref Expression
intidg (𝐴𝑉 {𝑥𝐴𝑥} = {𝐴})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem intidg
StepHypRef Expression
1 snexg 5390 . . . 4 (𝐴𝑉 → {𝐴} ∈ V)
2 snidg 4624 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴})
3 eleq2 2817 . . . 4 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
41, 2, 3elabd 3648 . . 3 (𝐴𝑉 → {𝐴} ∈ {𝑥𝐴𝑥})
5 intss1 4927 . . 3 ({𝐴} ∈ {𝑥𝐴𝑥} → {𝑥𝐴𝑥} ⊆ {𝐴})
64, 5syl 17 . 2 (𝐴𝑉 {𝑥𝐴𝑥} ⊆ {𝐴})
7 id 22 . . . . 5 (𝐴𝑥𝐴𝑥)
87ax-gen 1795 . . . 4 𝑥(𝐴𝑥𝐴𝑥)
9 elintabg 4921 . . . 4 (𝐴𝑉 → (𝐴 {𝑥𝐴𝑥} ↔ ∀𝑥(𝐴𝑥𝐴𝑥)))
108, 9mpbiri 258 . . 3 (𝐴𝑉𝐴 {𝑥𝐴𝑥})
1110snssd 4773 . 2 (𝐴𝑉 → {𝐴} ⊆ {𝑥𝐴𝑥})
126, 11eqssd 3964 1 (𝐴𝑉 {𝑥𝐴𝑥} = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  wss 3914  {csn 4589   cint 4910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3449  df-un 3919  df-ss 3931  df-sn 4590  df-pr 4592  df-int 4911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator