MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintab Structured version   Visualization version   GIF version

Theorem elintab 4911
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
elintab.ex 𝐴 ∈ V
Assertion
Ref Expression
elintab (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elintab
StepHypRef Expression
1 elintab.ex . 2 𝐴 ∈ V
2 elintabg 4910 . 2 (𝐴 ∈ V → (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥)))
31, 2ax-mp 5 1 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  {cab 2707  Vcvv 3438   cint 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-int 4900
This theorem is referenced by:  elintrab  4913  intmin4  4930  intab  4931  intidOLD  5405  dfom3  9562  dfom5  9565  tc2  9657  dfnn2  12159  brintclab  14926  efgi  19616  efgi2  19622  dfn0s2  28247  mclsax  35541  heibor1lem  37788  intabssd  43492  elmapintab  43569  cotrintab  43587  dffrege76  43912
  Copyright terms: Public domain W3C validator