| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elintab | Structured version Visualization version GIF version | ||
| Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elintab.ex | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elintab | ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintab.ex | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elintabg 4933 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2108 {cab 2713 Vcvv 3459 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-int 4923 |
| This theorem is referenced by: elintrab 4936 intmin4 4953 intab 4954 intidOLD 5433 dfom3 9661 dfom5 9664 tc2 9756 dfnn2 12253 brintclab 15020 efgi 19700 efgi2 19706 dfn0s2 28276 mclsax 35591 heibor1lem 37833 intabssd 43543 elmapintab 43620 cotrintab 43638 dffrege76 43963 |
| Copyright terms: Public domain | W3C validator |