| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elintab | Structured version Visualization version GIF version | ||
| Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elintab.ex | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elintab | ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintab.ex | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elintabg 4908 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2113 {cab 2711 Vcvv 3437 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-int 4898 |
| This theorem is referenced by: elintrab 4910 intmin4 4927 intab 4928 dfom3 9544 dfom5 9547 tc2 9637 dfnn2 12145 brintclab 14910 efgi 19633 efgi2 19639 dfn0s2 28261 mclsax 35634 heibor1lem 37870 intabssd 43637 elmapintab 43714 cotrintab 43732 dffrege76 44057 |
| Copyright terms: Public domain | W3C validator |