| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elintab | Structured version Visualization version GIF version | ||
| Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elintab.ex | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elintab | ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintab.ex | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elintabg 4908 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-int 4898 |
| This theorem is referenced by: elintrab 4910 intmin4 4927 intab 4928 dfom3 9537 dfom5 9540 tc2 9630 dfnn2 12138 brintclab 14908 efgi 19632 efgi2 19638 dfn0s2 28261 mclsax 35611 heibor1lem 37855 intabssd 43558 elmapintab 43635 cotrintab 43653 dffrege76 43978 |
| Copyright terms: Public domain | W3C validator |