Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elintab | Structured version Visualization version GIF version |
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
inteqab.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elintab | ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqab.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elint 4885 | . 2 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦)) |
3 | nfsab1 2723 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
4 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 | |
5 | 3, 4 | nfim 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦) |
6 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦(𝜑 → 𝐴 ∈ 𝑥) | |
7 | eleq1w 2821 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) | |
8 | abid 2719 | . . . . 5 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
9 | 7, 8 | bitrdi 287 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑)) |
10 | eleq2w 2822 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
11 | 9, 10 | imbi12d 345 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦) ↔ (𝜑 → 𝐴 ∈ 𝑥))) |
12 | 5, 6, 11 | cbvalv1 2338 | . 2 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝐴 ∈ 𝑦) ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
13 | 2, 12 | bitri 274 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∈ wcel 2106 {cab 2715 Vcvv 3432 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-int 4880 |
This theorem is referenced by: elintrab 4891 intmin4 4908 intab 4909 intid 5373 dfom3 9405 dfom5 9408 tc2 9500 dfnn2 11986 brintclab 14712 efgi 19325 efgi2 19331 mclsax 33531 heibor1lem 35967 intabssd 41126 elmapintab 41204 cotrintab 41222 dffrege76 41547 |
Copyright terms: Public domain | W3C validator |