MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintab Structured version   Visualization version   GIF version

Theorem elintab 4982
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
elintab.ex 𝐴 ∈ V
Assertion
Ref Expression
elintab (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elintab
StepHypRef Expression
1 elintab.ex . 2 𝐴 ∈ V
2 elintabg 4981 . 2 (𝐴 ∈ V → (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥)))
31, 2ax-mp 5 1 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  {cab 2717  Vcvv 3488   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-int 4971
This theorem is referenced by:  elintrab  4984  intmin4  5001  intab  5002  intidOLD  5478  dfom3  9716  dfom5  9719  tc2  9811  dfnn2  12306  brintclab  15050  efgi  19761  efgi2  19767  dfn0s2  28354  mclsax  35537  heibor1lem  37769  intabssd  43481  elmapintab  43558  cotrintab  43576  dffrege76  43901
  Copyright terms: Public domain W3C validator