| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elintab | Structured version Visualization version GIF version | ||
| Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| elintab.ex | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elintab | ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elintab.ex | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elintabg 4910 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2109 {cab 2707 Vcvv 3438 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-int 4900 |
| This theorem is referenced by: elintrab 4913 intmin4 4930 intab 4931 intidOLD 5405 dfom3 9562 dfom5 9565 tc2 9657 dfnn2 12159 brintclab 14926 efgi 19616 efgi2 19622 dfn0s2 28247 mclsax 35541 heibor1lem 37788 intabssd 43492 elmapintab 43569 cotrintab 43587 dffrege76 43912 |
| Copyright terms: Public domain | W3C validator |