MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintab Structured version   Visualization version   GIF version

Theorem elintab 4890
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
inteqab.1 𝐴 ∈ V
Assertion
Ref Expression
elintab (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 inteqab.1 . . 3 𝐴 ∈ V
21elint 4885 . 2 (𝐴 {𝑥𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦))
3 nfsab1 2723 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
4 nfv 1917 . . . 4 𝑥 𝐴𝑦
53, 4nfim 1899 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦)
6 nfv 1917 . . 3 𝑦(𝜑𝐴𝑥)
7 eleq1w 2821 . . . . 5 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {𝑥𝜑}))
8 abid 2719 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
97, 8bitrdi 287 . . . 4 (𝑦 = 𝑥 → (𝑦 ∈ {𝑥𝜑} ↔ 𝜑))
10 eleq2w 2822 . . . 4 (𝑦 = 𝑥 → (𝐴𝑦𝐴𝑥))
119, 10imbi12d 345 . . 3 (𝑦 = 𝑥 → ((𝑦 ∈ {𝑥𝜑} → 𝐴𝑦) ↔ (𝜑𝐴𝑥)))
125, 6, 11cbvalv1 2338 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝐴𝑦) ↔ ∀𝑥(𝜑𝐴𝑥))
132, 12bitri 274 1 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2106  {cab 2715  Vcvv 3432   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-int 4880
This theorem is referenced by:  elintrab  4891  intmin4  4908  intab  4909  intid  5373  dfom3  9405  dfom5  9408  tc2  9500  dfnn2  11986  brintclab  14712  efgi  19325  efgi2  19331  mclsax  33531  heibor1lem  35967  intabssd  41126  elmapintab  41204  cotrintab  41222  dffrege76  41547
  Copyright terms: Public domain W3C validator