MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elintab Structured version   Visualization version   GIF version

Theorem elintab 4961
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
elintab.ex 𝐴 ∈ V
Assertion
Ref Expression
elintab (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elintab
StepHypRef Expression
1 elintab.ex . 2 𝐴 ∈ V
2 elintabg 4960 . 2 (𝐴 ∈ V → (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥)))
31, 2ax-mp 5 1 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2104  {cab 2707  Vcvv 3472   cint 4949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-int 4950
This theorem is referenced by:  elintrab  4963  intmin4  4980  intab  4981  intidOLD  5457  dfom3  9644  dfom5  9647  tc2  9739  dfnn2  12229  brintclab  14952  efgi  19628  efgi2  19634  dfn0s2  27941  mclsax  34858  heibor1lem  36980  intabssd  42572  elmapintab  42649  cotrintab  42667  dffrege76  42992
  Copyright terms: Public domain W3C validator