MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absprodnn Structured version   Visualization version   GIF version

Theorem absprodnn 16562
Description: The absolute value of the product of the elements of a finite subset of the integers not containing 0 is a poitive integer. (Contributed by AV, 21-Aug-2020.)
Hypotheses
Ref Expression
absproddvds.s (𝜑𝑍 ⊆ ℤ)
absproddvds.f (𝜑𝑍 ∈ Fin)
absproddvds.p 𝑃 = (abs‘∏𝑧𝑍 𝑧)
absprodnn.z (𝜑 → 0 ∉ 𝑍)
Assertion
Ref Expression
absprodnn (𝜑𝑃 ∈ ℕ)
Distinct variable groups:   𝑧,𝑍   𝜑,𝑧
Allowed substitution hint:   𝑃(𝑧)

Proof of Theorem absprodnn
StepHypRef Expression
1 absproddvds.p . 2 𝑃 = (abs‘∏𝑧𝑍 𝑧)
2 absproddvds.f . . . 4 (𝜑𝑍 ∈ Fin)
3 absproddvds.s . . . . 5 (𝜑𝑍 ⊆ ℤ)
43sselda 3977 . . . 4 ((𝜑𝑧𝑍) → 𝑧 ∈ ℤ)
52, 4fprodzcl 15904 . . 3 (𝜑 → ∏𝑧𝑍 𝑧 ∈ ℤ)
64zcnd 12671 . . . 4 ((𝜑𝑧𝑍) → 𝑧 ∈ ℂ)
7 absprodnn.z . . . . . 6 (𝜑 → 0 ∉ 𝑍)
8 elnelne2 3052 . . . . . . 7 ((𝑧𝑍 ∧ 0 ∉ 𝑍) → 𝑧 ≠ 0)
98expcom 413 . . . . . 6 (0 ∉ 𝑍 → (𝑧𝑍𝑧 ≠ 0))
107, 9syl 17 . . . . 5 (𝜑 → (𝑧𝑍𝑧 ≠ 0))
1110imp 406 . . . 4 ((𝜑𝑧𝑍) → 𝑧 ≠ 0)
122, 6, 11fprodn0 15929 . . 3 (𝜑 → ∏𝑧𝑍 𝑧 ≠ 0)
13 nnabscl 15278 . . 3 ((∏𝑧𝑍 𝑧 ∈ ℤ ∧ ∏𝑧𝑍 𝑧 ≠ 0) → (abs‘∏𝑧𝑍 𝑧) ∈ ℕ)
145, 12, 13syl2anc 583 . 2 (𝜑 → (abs‘∏𝑧𝑍 𝑧) ∈ ℕ)
151, 14eqeltrid 2831 1 (𝜑𝑃 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2934  wnel 3040  wss 3943  cfv 6537  Fincfn 8941  0cc0 11112  cn 12216  cz 12562  abscabs 15187  cprod 15855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-prod 15856
This theorem is referenced by:  fissn0dvds  16563
  Copyright terms: Public domain W3C validator