MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmrexrnb Structured version   Visualization version   GIF version

Theorem eldmrexrnb 7093
Description: For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv 6550 of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv 6550 of the value of a function, (𝐹𝑌) = ∅ may mean that the value of 𝐹 at 𝑌 is the empty set or that 𝐹 is not defined at 𝑌. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
Assertion
Ref Expression
eldmrexrnb ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌

Proof of Theorem eldmrexrnb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldmrexrn 7092 . . 3 (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
21adantr 480 . 2 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
3 eleq1 2821 . . . . 5 (𝑥 = (𝐹𝑌) → (𝑥 ∈ ran 𝐹 ↔ (𝐹𝑌) ∈ ran 𝐹))
4 elnelne2 3047 . . . . . . . . 9 (((𝐹𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝐹𝑌) ≠ ∅)
5 n0 4335 . . . . . . . . . 10 ((𝐹𝑌) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹𝑌))
6 elfvdm 6924 . . . . . . . . . . 11 (𝑦 ∈ (𝐹𝑌) → 𝑌 ∈ dom 𝐹)
76exlimiv 1929 . . . . . . . . . 10 (∃𝑦 𝑦 ∈ (𝐹𝑌) → 𝑌 ∈ dom 𝐹)
85, 7sylbi 217 . . . . . . . . 9 ((𝐹𝑌) ≠ ∅ → 𝑌 ∈ dom 𝐹)
94, 8syl 17 . . . . . . . 8 (((𝐹𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹)
109expcom 413 . . . . . . 7 (∅ ∉ ran 𝐹 → ((𝐹𝑌) ∈ ran 𝐹𝑌 ∈ dom 𝐹))
1110adantl 481 . . . . . 6 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → ((𝐹𝑌) ∈ ran 𝐹𝑌 ∈ dom 𝐹))
1211com12 32 . . . . 5 ((𝐹𝑌) ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹))
133, 12biimtrdi 253 . . . 4 (𝑥 = (𝐹𝑌) → (𝑥 ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹)))
1413com13 88 . . 3 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 = (𝐹𝑌) → 𝑌 ∈ dom 𝐹)))
1514rexlimdv 3140 . 2 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌) → 𝑌 ∈ dom 𝐹))
162, 15impbid 212 1 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  wnel 3035  wrex 3059  c0 4315  dom cdm 5667  ran crn 5668  Fun wfun 6536  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6495  df-fun 6544  df-fn 6545  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator