| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmrexrnb | Structured version Visualization version GIF version | ||
| Description: For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv 6550 of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv 6550 of the value of a function, (𝐹‘𝑌) = ∅ may mean that the value of 𝐹 at 𝑌 is the empty set or that 𝐹 is not defined at 𝑌. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
| Ref | Expression |
|---|---|
| eldmrexrnb | ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmrexrn 7092 | . . 3 ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| 3 | eleq1 2821 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 ∈ ran 𝐹 ↔ (𝐹‘𝑌) ∈ ran 𝐹)) | |
| 4 | elnelne2 3047 | . . . . . . . . 9 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝐹‘𝑌) ≠ ∅) | |
| 5 | n0 4335 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑌) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹‘𝑌)) | |
| 6 | elfvdm 6924 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹) | |
| 7 | 6 | exlimiv 1929 | . . . . . . . . . 10 ⊢ (∃𝑦 𝑦 ∈ (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹) |
| 8 | 5, 7 | sylbi 217 | . . . . . . . . 9 ⊢ ((𝐹‘𝑌) ≠ ∅ → 𝑌 ∈ dom 𝐹) |
| 9 | 4, 8 | syl 17 | . . . . . . . 8 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹) |
| 10 | 9 | expcom 413 | . . . . . . 7 ⊢ (∅ ∉ ran 𝐹 → ((𝐹‘𝑌) ∈ ran 𝐹 → 𝑌 ∈ dom 𝐹)) |
| 11 | 10 | adantl 481 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → ((𝐹‘𝑌) ∈ ran 𝐹 → 𝑌 ∈ dom 𝐹)) |
| 12 | 11 | com12 32 | . . . . 5 ⊢ ((𝐹‘𝑌) ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹)) |
| 13 | 3, 12 | biimtrdi 253 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹))) |
| 14 | 13 | com13 88 | . . 3 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 = (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹))) |
| 15 | 14 | rexlimdv 3140 | . 2 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹)) |
| 16 | 2, 15 | impbid 212 | 1 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∉ wnel 3035 ∃wrex 3059 ∅c0 4315 dom cdm 5667 ran crn 5668 Fun wfun 6536 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fn 6545 df-fv 6550 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |