| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmrexrnb | Structured version Visualization version GIF version | ||
| Description: For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv 6490 of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv 6490 of the value of a function, (𝐹‘𝑌) = ∅ may mean that the value of 𝐹 at 𝑌 is the empty set or that 𝐹 is not defined at 𝑌. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
| Ref | Expression |
|---|---|
| eldmrexrnb | ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmrexrn 7025 | . . 3 ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| 3 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 ∈ ran 𝐹 ↔ (𝐹‘𝑌) ∈ ran 𝐹)) | |
| 4 | elnelne2 3041 | . . . . . . . . 9 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝐹‘𝑌) ≠ ∅) | |
| 5 | n0 4304 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑌) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹‘𝑌)) | |
| 6 | elfvdm 6857 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹) | |
| 7 | 6 | exlimiv 1930 | . . . . . . . . . 10 ⊢ (∃𝑦 𝑦 ∈ (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹) |
| 8 | 5, 7 | sylbi 217 | . . . . . . . . 9 ⊢ ((𝐹‘𝑌) ≠ ∅ → 𝑌 ∈ dom 𝐹) |
| 9 | 4, 8 | syl 17 | . . . . . . . 8 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹) |
| 10 | 9 | expcom 413 | . . . . . . 7 ⊢ (∅ ∉ ran 𝐹 → ((𝐹‘𝑌) ∈ ran 𝐹 → 𝑌 ∈ dom 𝐹)) |
| 11 | 10 | adantl 481 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → ((𝐹‘𝑌) ∈ ran 𝐹 → 𝑌 ∈ dom 𝐹)) |
| 12 | 11 | com12 32 | . . . . 5 ⊢ ((𝐹‘𝑌) ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹)) |
| 13 | 3, 12 | biimtrdi 253 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹))) |
| 14 | 13 | com13 88 | . . 3 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 = (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹))) |
| 15 | 14 | rexlimdv 3128 | . 2 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹)) |
| 16 | 2, 15 | impbid 212 | 1 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∃wrex 3053 ∅c0 4284 dom cdm 5619 ran crn 5620 Fun wfun 6476 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |