| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmrexrnb | Structured version Visualization version GIF version | ||
| Description: For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv 6489 of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv 6489 of the value of a function, (𝐹‘𝑌) = ∅ may mean that the value of 𝐹 at 𝑌 is the empty set or that 𝐹 is not defined at 𝑌. (Contributed by Alexander van der Vekens, 17-Dec-2017.) |
| Ref | Expression |
|---|---|
| eldmrexrnb | ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmrexrn 7024 | . . 3 ⊢ (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| 3 | eleq1 2819 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 ∈ ran 𝐹 ↔ (𝐹‘𝑌) ∈ ran 𝐹)) | |
| 4 | elnelne2 3044 | . . . . . . . . 9 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝐹‘𝑌) ≠ ∅) | |
| 5 | n0 4300 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑌) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹‘𝑌)) | |
| 6 | elfvdm 6856 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹) | |
| 7 | 6 | exlimiv 1931 | . . . . . . . . . 10 ⊢ (∃𝑦 𝑦 ∈ (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹) |
| 8 | 5, 7 | sylbi 217 | . . . . . . . . 9 ⊢ ((𝐹‘𝑌) ≠ ∅ → 𝑌 ∈ dom 𝐹) |
| 9 | 4, 8 | syl 17 | . . . . . . . 8 ⊢ (((𝐹‘𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹) |
| 10 | 9 | expcom 413 | . . . . . . 7 ⊢ (∅ ∉ ran 𝐹 → ((𝐹‘𝑌) ∈ ran 𝐹 → 𝑌 ∈ dom 𝐹)) |
| 11 | 10 | adantl 481 | . . . . . 6 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → ((𝐹‘𝑌) ∈ ran 𝐹 → 𝑌 ∈ dom 𝐹)) |
| 12 | 11 | com12 32 | . . . . 5 ⊢ ((𝐹‘𝑌) ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹)) |
| 13 | 3, 12 | biimtrdi 253 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑌) → (𝑥 ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹))) |
| 14 | 13 | com13 88 | . . 3 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 = (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹))) |
| 15 | 14 | rexlimdv 3131 | . 2 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌) → 𝑌 ∈ dom 𝐹)) |
| 16 | 2, 15 | impbid 212 | 1 ⊢ ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 ∃wrex 3056 ∅c0 4280 dom cdm 5614 ran crn 5615 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |