Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnmrid Structured version   Visualization version   GIF version

Theorem 2zrngnmrid 48244
Description: R has no multiplicative (right) identity. (Contributed by AV, 12-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnmrid 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
Distinct variable groups:   𝑥,𝑧   𝐸,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥,𝑧   𝑥,𝐸,𝑧   𝑀,𝑎,𝑏
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnmrid
StepHypRef Expression
1 eldifsn 4750 . . . 4 (𝑎 ∈ (𝐸 ∖ {0}) ↔ (𝑎𝐸𝑎 ≠ 0))
2 eqeq1 2733 . . . . . . . 8 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
32rexbidv 3157 . . . . . . 7 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
4 2zrng.e . . . . . . 7 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
53, 4elrab2 3662 . . . . . 6 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
6 zcn 12534 . . . . . . 7 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
76adantr 480 . . . . . 6 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → 𝑎 ∈ ℂ)
85, 7sylbi 217 . . . . 5 (𝑎𝐸𝑎 ∈ ℂ)
98anim1i 615 . . . 4 ((𝑎𝐸𝑎 ≠ 0) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
101, 9sylbi 217 . . 3 (𝑎 ∈ (𝐸 ∖ {0}) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
11 eqeq1 2733 . . . . . . 7 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
1211rexbidv 3157 . . . . . 6 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
1312, 4elrab2 3662 . . . . 5 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
14 zcn 12534 . . . . . 6 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
1514adantr 480 . . . . 5 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℂ)
1613, 15sylbi 217 . . . 4 (𝑏𝐸𝑏 ∈ ℂ)
1716ancli 548 . . 3 (𝑏𝐸 → (𝑏𝐸𝑏 ∈ ℂ))
1841neven 48226 . . . . . . 7 1 ∉ 𝐸
19 elnelne2 3041 . . . . . . 7 ((𝑏𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1)
2018, 19mpan2 691 . . . . . 6 (𝑏𝐸𝑏 ≠ 1)
2120ad2antrl 728 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → 𝑏 ≠ 1)
22 simpr 484 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
2322anim2i 617 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
24 3anass 1094 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ↔ (𝑏 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)))
25 ancom 460 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)) ↔ ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
2624, 25bitri 275 . . . . . . 7 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ↔ ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
2723, 26sylibr 234 . . . . . 6 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
28 divcan3 11863 . . . . . 6 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → ((𝑎 · 𝑏) / 𝑎) = 𝑏)
2927, 28syl 17 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) / 𝑎) = 𝑏)
30 divid 11868 . . . . . 6 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → (𝑎 / 𝑎) = 1)
3130adantr 480 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 / 𝑎) = 1)
3221, 29, 313netr4d 3002 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) / 𝑎) ≠ (𝑎 / 𝑎))
33 simpl 482 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℂ)
34 mulcl 11152 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) ∈ ℂ)
3533, 22, 34syl2an 596 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 · 𝑏) ∈ ℂ)
3633adantr 480 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → 𝑎 ∈ ℂ)
37 simpl 482 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
38 div11 11865 . . . . . . 7 (((𝑎 · 𝑏) ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)) → (((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎) ↔ (𝑎 · 𝑏) = 𝑎))
3935, 36, 37, 38syl3anc 1373 . . . . . 6 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎) ↔ (𝑎 · 𝑏) = 𝑎))
4039biimprd 248 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) = 𝑎 → ((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎)))
4140necon3d 2946 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (((𝑎 · 𝑏) / 𝑎) ≠ (𝑎 / 𝑎) → (𝑎 · 𝑏) ≠ 𝑎))
4232, 41mpd 15 . . 3 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 · 𝑏) ≠ 𝑎)
4310, 17, 42syl2an 596 . 2 ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏𝐸) → (𝑎 · 𝑏) ≠ 𝑎)
4443rgen2 3177 1 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  {crab 3405  cdif 3911  {csn 4589  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   · cmul 11073   / cdiv 11835  2c2 12241  cz 12529  s cress 17200  mulGrpcmgp 20049  fldccnfld 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530
This theorem is referenced by:  2zrngnmlid2  48245
  Copyright terms: Public domain W3C validator