Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnmrid Structured version   Visualization version   GIF version

Theorem 2zrngnmrid 45396
Description: R has no multiplicative (right) identity. (Contributed by AV, 12-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnmrid 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
Distinct variable groups:   𝑥,𝑧   𝐸,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥,𝑧   𝑥,𝐸,𝑧   𝑀,𝑎,𝑏
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnmrid
StepHypRef Expression
1 eldifsn 4717 . . . 4 (𝑎 ∈ (𝐸 ∖ {0}) ↔ (𝑎𝐸𝑎 ≠ 0))
2 eqeq1 2742 . . . . . . . 8 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
32rexbidv 3225 . . . . . . 7 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
4 2zrng.e . . . . . . 7 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
53, 4elrab2 3620 . . . . . 6 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
6 zcn 12254 . . . . . . 7 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
76adantr 480 . . . . . 6 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → 𝑎 ∈ ℂ)
85, 7sylbi 216 . . . . 5 (𝑎𝐸𝑎 ∈ ℂ)
98anim1i 614 . . . 4 ((𝑎𝐸𝑎 ≠ 0) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
101, 9sylbi 216 . . 3 (𝑎 ∈ (𝐸 ∖ {0}) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
11 eqeq1 2742 . . . . . . 7 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
1211rexbidv 3225 . . . . . 6 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
1312, 4elrab2 3620 . . . . 5 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
14 zcn 12254 . . . . . 6 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
1514adantr 480 . . . . 5 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℂ)
1613, 15sylbi 216 . . . 4 (𝑏𝐸𝑏 ∈ ℂ)
1716ancli 548 . . 3 (𝑏𝐸 → (𝑏𝐸𝑏 ∈ ℂ))
1841neven 45378 . . . . . . 7 1 ∉ 𝐸
19 elnelne2 3059 . . . . . . 7 ((𝑏𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1)
2018, 19mpan2 687 . . . . . 6 (𝑏𝐸𝑏 ≠ 1)
2120ad2antrl 724 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → 𝑏 ≠ 1)
22 simpr 484 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
2322anim2i 616 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
24 3anass 1093 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ↔ (𝑏 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)))
25 ancom 460 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)) ↔ ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
2624, 25bitri 274 . . . . . . 7 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ↔ ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
2723, 26sylibr 233 . . . . . 6 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
28 divcan3 11589 . . . . . 6 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → ((𝑎 · 𝑏) / 𝑎) = 𝑏)
2927, 28syl 17 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) / 𝑎) = 𝑏)
30 divid 11592 . . . . . 6 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → (𝑎 / 𝑎) = 1)
3130adantr 480 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 / 𝑎) = 1)
3221, 29, 313netr4d 3020 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) / 𝑎) ≠ (𝑎 / 𝑎))
33 simpl 482 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℂ)
34 mulcl 10886 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) ∈ ℂ)
3533, 22, 34syl2an 595 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 · 𝑏) ∈ ℂ)
3633adantr 480 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → 𝑎 ∈ ℂ)
37 simpl 482 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
38 div11 11591 . . . . . . 7 (((𝑎 · 𝑏) ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)) → (((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎) ↔ (𝑎 · 𝑏) = 𝑎))
3935, 36, 37, 38syl3anc 1369 . . . . . 6 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎) ↔ (𝑎 · 𝑏) = 𝑎))
4039biimprd 247 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) = 𝑎 → ((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎)))
4140necon3d 2963 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (((𝑎 · 𝑏) / 𝑎) ≠ (𝑎 / 𝑎) → (𝑎 · 𝑏) ≠ 𝑎))
4232, 41mpd 15 . . 3 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 · 𝑏) ≠ 𝑎)
4310, 17, 42syl2an 595 . 2 ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏𝐸) → (𝑎 · 𝑏) ≠ 𝑎)
4443rgen2 3126 1 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wnel 3048  wral 3063  wrex 3064  {crab 3067  cdif 3880  {csn 4558  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562  2c2 11958  cz 12249  s cress 16867  mulGrpcmgp 19635  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250
This theorem is referenced by:  2zrngnmlid2  45397
  Copyright terms: Public domain W3C validator