Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnmrid Structured version   Visualization version   GIF version

Theorem 2zrngnmrid 46238
Description: R has no multiplicative (right) identity. (Contributed by AV, 12-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnmrid 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
Distinct variable groups:   𝑥,𝑧   𝐸,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥,𝑧   𝑥,𝐸,𝑧   𝑀,𝑎,𝑏
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnmrid
StepHypRef Expression
1 eldifsn 4747 . . . 4 (𝑎 ∈ (𝐸 ∖ {0}) ↔ (𝑎𝐸𝑎 ≠ 0))
2 eqeq1 2740 . . . . . . . 8 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
32rexbidv 3175 . . . . . . 7 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
4 2zrng.e . . . . . . 7 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
53, 4elrab2 3648 . . . . . 6 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
6 zcn 12504 . . . . . . 7 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
76adantr 481 . . . . . 6 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → 𝑎 ∈ ℂ)
85, 7sylbi 216 . . . . 5 (𝑎𝐸𝑎 ∈ ℂ)
98anim1i 615 . . . 4 ((𝑎𝐸𝑎 ≠ 0) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
101, 9sylbi 216 . . 3 (𝑎 ∈ (𝐸 ∖ {0}) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
11 eqeq1 2740 . . . . . . 7 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
1211rexbidv 3175 . . . . . 6 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
1312, 4elrab2 3648 . . . . 5 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
14 zcn 12504 . . . . . 6 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
1514adantr 481 . . . . 5 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℂ)
1613, 15sylbi 216 . . . 4 (𝑏𝐸𝑏 ∈ ℂ)
1716ancli 549 . . 3 (𝑏𝐸 → (𝑏𝐸𝑏 ∈ ℂ))
1841neven 46220 . . . . . . 7 1 ∉ 𝐸
19 elnelne2 3060 . . . . . . 7 ((𝑏𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1)
2018, 19mpan2 689 . . . . . 6 (𝑏𝐸𝑏 ≠ 1)
2120ad2antrl 726 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → 𝑏 ≠ 1)
22 simpr 485 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
2322anim2i 617 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
24 3anass 1095 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ↔ (𝑏 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)))
25 ancom 461 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)) ↔ ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
2624, 25bitri 274 . . . . . . 7 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ↔ ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
2723, 26sylibr 233 . . . . . 6 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
28 divcan3 11839 . . . . . 6 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → ((𝑎 · 𝑏) / 𝑎) = 𝑏)
2927, 28syl 17 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) / 𝑎) = 𝑏)
30 divid 11842 . . . . . 6 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → (𝑎 / 𝑎) = 1)
3130adantr 481 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 / 𝑎) = 1)
3221, 29, 313netr4d 3021 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) / 𝑎) ≠ (𝑎 / 𝑎))
33 simpl 483 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℂ)
34 mulcl 11135 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) ∈ ℂ)
3533, 22, 34syl2an 596 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 · 𝑏) ∈ ℂ)
3633adantr 481 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → 𝑎 ∈ ℂ)
37 simpl 483 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
38 div11 11841 . . . . . . 7 (((𝑎 · 𝑏) ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)) → (((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎) ↔ (𝑎 · 𝑏) = 𝑎))
3935, 36, 37, 38syl3anc 1371 . . . . . 6 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎) ↔ (𝑎 · 𝑏) = 𝑎))
4039biimprd 247 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) = 𝑎 → ((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎)))
4140necon3d 2964 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (((𝑎 · 𝑏) / 𝑎) ≠ (𝑎 / 𝑎) → (𝑎 · 𝑏) ≠ 𝑎))
4232, 41mpd 15 . . 3 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 · 𝑏) ≠ 𝑎)
4310, 17, 42syl2an 596 . 2 ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏𝐸) → (𝑎 · 𝑏) ≠ 𝑎)
4443rgen2 3194 1 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wnel 3049  wral 3064  wrex 3073  {crab 3407  cdif 3907  {csn 4586  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   · cmul 11056   / cdiv 11812  2c2 12208  cz 12499  s cress 17112  mulGrpcmgp 19896  fldccnfld 20796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500
This theorem is referenced by:  2zrngnmlid2  46239
  Copyright terms: Public domain W3C validator