Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnmrid Structured version   Visualization version   GIF version

Theorem 2zrngnmrid 42619
Description: R has no multiplicative (right) identity. (Contributed by AV, 12-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnmrid 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
Distinct variable groups:   𝑥,𝑧   𝐸,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥,𝑧   𝑥,𝐸,𝑧   𝑀,𝑎,𝑏
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnmrid
StepHypRef Expression
1 eldifsn 4472 . . . 4 (𝑎 ∈ (𝐸 ∖ {0}) ↔ (𝑎𝐸𝑎 ≠ 0))
2 eqeq1 2769 . . . . . . . 8 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
32rexbidv 3199 . . . . . . 7 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
4 2zrng.e . . . . . . 7 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
53, 4elrab2 3523 . . . . . 6 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
6 zcn 11629 . . . . . . 7 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
76adantr 472 . . . . . 6 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → 𝑎 ∈ ℂ)
85, 7sylbi 208 . . . . 5 (𝑎𝐸𝑎 ∈ ℂ)
98anim1i 608 . . . 4 ((𝑎𝐸𝑎 ≠ 0) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
101, 9sylbi 208 . . 3 (𝑎 ∈ (𝐸 ∖ {0}) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
11 eqeq1 2769 . . . . . . 7 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
1211rexbidv 3199 . . . . . 6 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
1312, 4elrab2 3523 . . . . 5 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
14 zcn 11629 . . . . . 6 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
1514adantr 472 . . . . 5 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℂ)
1613, 15sylbi 208 . . . 4 (𝑏𝐸𝑏 ∈ ℂ)
1716ancli 544 . . 3 (𝑏𝐸 → (𝑏𝐸𝑏 ∈ ℂ))
1841neven 42601 . . . . . . 7 1 ∉ 𝐸
19 elnelne2 3051 . . . . . . 7 ((𝑏𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1)
2018, 19mpan2 682 . . . . . 6 (𝑏𝐸𝑏 ≠ 1)
2120ad2antrl 719 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → 𝑏 ≠ 1)
22 simpr 477 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
2322anim2i 610 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
24 3anass 1116 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ↔ (𝑏 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)))
25 ancom 452 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)) ↔ ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
2624, 25bitri 266 . . . . . . 7 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ↔ ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
2723, 26sylibr 225 . . . . . 6 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
28 divcan3 10965 . . . . . 6 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → ((𝑎 · 𝑏) / 𝑎) = 𝑏)
2927, 28syl 17 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) / 𝑎) = 𝑏)
30 divid 10968 . . . . . 6 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → (𝑎 / 𝑎) = 1)
3130adantr 472 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 / 𝑎) = 1)
3221, 29, 313netr4d 3014 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) / 𝑎) ≠ (𝑎 / 𝑎))
33 simpl 474 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℂ)
34 mulcl 10273 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) ∈ ℂ)
3533, 22, 34syl2an 589 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 · 𝑏) ∈ ℂ)
3633adantr 472 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → 𝑎 ∈ ℂ)
37 simpl 474 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
38 div11 10967 . . . . . . 7 (((𝑎 · 𝑏) ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)) → (((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎) ↔ (𝑎 · 𝑏) = 𝑎))
3935, 36, 37, 38syl3anc 1490 . . . . . 6 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎) ↔ (𝑎 · 𝑏) = 𝑎))
4039biimprd 239 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) = 𝑎 → ((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎)))
4140necon3d 2958 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (((𝑎 · 𝑏) / 𝑎) ≠ (𝑎 / 𝑎) → (𝑎 · 𝑏) ≠ 𝑎))
4232, 41mpd 15 . . 3 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 · 𝑏) ≠ 𝑎)
4310, 17, 42syl2an 589 . 2 ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏𝐸) → (𝑎 · 𝑏) ≠ 𝑎)
4443rgen2 3122 1 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wnel 3040  wral 3055  wrex 3056  {crab 3059  cdif 3729  {csn 4334  cfv 6068  (class class class)co 6842  cc 10187  0cc0 10189  1c1 10190   · cmul 10194   / cdiv 10938  2c2 11327  cz 11624  s cress 16131  mulGrpcmgp 18756  fldccnfld 20019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625
This theorem is referenced by:  2zrngnmlid2  42620
  Copyright terms: Public domain W3C validator