Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnmrid Structured version   Visualization version   GIF version

Theorem 2zrngnmrid 44228
Description: R has no multiplicative (right) identity. (Contributed by AV, 12-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnmrid 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
Distinct variable groups:   𝑥,𝑧   𝐸,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥,𝑧   𝑥,𝐸,𝑧   𝑀,𝑎,𝑏
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnmrid
StepHypRef Expression
1 eldifsn 4722 . . . 4 (𝑎 ∈ (𝐸 ∖ {0}) ↔ (𝑎𝐸𝑎 ≠ 0))
2 eqeq1 2828 . . . . . . . 8 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
32rexbidv 3300 . . . . . . 7 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
4 2zrng.e . . . . . . 7 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
53, 4elrab2 3686 . . . . . 6 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
6 zcn 11989 . . . . . . 7 (𝑎 ∈ ℤ → 𝑎 ∈ ℂ)
76adantr 483 . . . . . 6 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → 𝑎 ∈ ℂ)
85, 7sylbi 219 . . . . 5 (𝑎𝐸𝑎 ∈ ℂ)
98anim1i 616 . . . 4 ((𝑎𝐸𝑎 ≠ 0) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
101, 9sylbi 219 . . 3 (𝑎 ∈ (𝐸 ∖ {0}) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
11 eqeq1 2828 . . . . . . 7 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
1211rexbidv 3300 . . . . . 6 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
1312, 4elrab2 3686 . . . . 5 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
14 zcn 11989 . . . . . 6 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
1514adantr 483 . . . . 5 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℂ)
1613, 15sylbi 219 . . . 4 (𝑏𝐸𝑏 ∈ ℂ)
1716ancli 551 . . 3 (𝑏𝐸 → (𝑏𝐸𝑏 ∈ ℂ))
1841neven 44210 . . . . . . 7 1 ∉ 𝐸
19 elnelne2 3137 . . . . . . 7 ((𝑏𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1)
2018, 19mpan2 689 . . . . . 6 (𝑏𝐸𝑏 ≠ 1)
2120ad2antrl 726 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → 𝑏 ≠ 1)
22 simpr 487 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
2322anim2i 618 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
24 3anass 1091 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ↔ (𝑏 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)))
25 ancom 463 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)) ↔ ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
2624, 25bitri 277 . . . . . . 7 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ↔ ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ 𝑏 ∈ ℂ))
2723, 26sylibr 236 . . . . . 6 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
28 divcan3 11327 . . . . . 6 ((𝑏 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → ((𝑎 · 𝑏) / 𝑎) = 𝑏)
2927, 28syl 17 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) / 𝑎) = 𝑏)
30 divid 11330 . . . . . 6 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → (𝑎 / 𝑎) = 1)
3130adantr 483 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 / 𝑎) = 1)
3221, 29, 313netr4d 3096 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) / 𝑎) ≠ (𝑎 / 𝑎))
33 simpl 485 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) → 𝑎 ∈ ℂ)
34 mulcl 10624 . . . . . . . 8 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) ∈ ℂ)
3533, 22, 34syl2an 597 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 · 𝑏) ∈ ℂ)
3633adantr 483 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → 𝑎 ∈ ℂ)
37 simpl 485 . . . . . . 7 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0))
38 div11 11329 . . . . . . 7 (((𝑎 · 𝑏) ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ (𝑎 ∈ ℂ ∧ 𝑎 ≠ 0)) → (((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎) ↔ (𝑎 · 𝑏) = 𝑎))
3935, 36, 37, 38syl3anc 1367 . . . . . 6 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎) ↔ (𝑎 · 𝑏) = 𝑎))
4039biimprd 250 . . . . 5 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → ((𝑎 · 𝑏) = 𝑎 → ((𝑎 · 𝑏) / 𝑎) = (𝑎 / 𝑎)))
4140necon3d 3040 . . . 4 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (((𝑎 · 𝑏) / 𝑎) ≠ (𝑎 / 𝑎) → (𝑎 · 𝑏) ≠ 𝑎))
4232, 41mpd 15 . . 3 (((𝑎 ∈ ℂ ∧ 𝑎 ≠ 0) ∧ (𝑏𝐸𝑏 ∈ ℂ)) → (𝑎 · 𝑏) ≠ 𝑎)
4310, 17, 42syl2an 597 . 2 ((𝑎 ∈ (𝐸 ∖ {0}) ∧ 𝑏𝐸) → (𝑎 · 𝑏) ≠ 𝑎)
4443rgen2 3206 1 𝑎 ∈ (𝐸 ∖ {0})∀𝑏𝐸 (𝑎 · 𝑏) ≠ 𝑎
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wnel 3126  wral 3141  wrex 3142  {crab 3145  cdif 3936  {csn 4570  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   · cmul 10545   / cdiv 11300  2c2 11695  cz 11984  s cress 16487  mulGrpcmgp 19242  fldccnfld 20548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985
This theorem is referenced by:  2zrngnmlid2  44229
  Copyright terms: Public domain W3C validator