| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimaelsetpreimafv | Structured version Visualization version GIF version | ||
| Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| uniimaelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | 1 | 0nelsetpreimafv 47500 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
| 3 | elnelne2 3044 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → 𝑆 ≠ ∅) | |
| 4 | n0 4300 | . . . . . 6 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑆) | |
| 5 | 3, 4 | sylib 218 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → ∃𝑦 𝑦 ∈ 𝑆) |
| 6 | 5 | expcom 413 | . . . 4 ⊢ (∅ ∉ 𝑃 → (𝑆 ∈ 𝑃 → ∃𝑦 𝑦 ∈ 𝑆)) |
| 7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑆 ∈ 𝑃 → ∃𝑦 𝑦 ∈ 𝑆)) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑦 𝑦 ∈ 𝑆) |
| 9 | 1 | imaelsetpreimafv 47505 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑦 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑦)}) |
| 10 | 9 | 3expa 1118 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑦)}) |
| 11 | 10 | unieqd 4869 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) = ∪ {(𝐹‘𝑦)}) |
| 12 | fvex 6835 | . . . . 5 ⊢ (𝐹‘𝑦) ∈ V | |
| 13 | 12 | unisn 4875 | . . . 4 ⊢ ∪ {(𝐹‘𝑦)} = (𝐹‘𝑦) |
| 14 | 11, 13 | eqtrdi 2782 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑦)) |
| 15 | dffn3 6663 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
| 16 | 15 | biimpi 216 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴⟶ran 𝐹) |
| 17 | 16 | ad2antrr 726 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → 𝐹:𝐴⟶ran 𝐹) |
| 18 | 1 | elsetpreimafvssdm 47496 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
| 19 | 18 | sselda 3929 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐴) |
| 20 | 17, 19 | ffvelcdmd 7018 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → (𝐹‘𝑦) ∈ ran 𝐹) |
| 21 | 14, 20 | eqeltrd 2831 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
| 22 | 8, 21 | exlimddv 1936 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∉ wnel 3032 ∃wrex 3056 ∅c0 4280 {csn 4573 ∪ cuni 4856 ◡ccnv 5613 ran crn 5615 “ cima 5617 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: imasetpreimafvbijlemf 47511 fundcmpsurbijinjpreimafv 47517 |
| Copyright terms: Public domain | W3C validator |