Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimaelsetpreimafv Structured version   Visualization version   GIF version

Theorem uniimaelsetpreimafv 46659
Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (◑𝐹 β€œ {(πΉβ€˜π‘₯)})}
Assertion
Ref Expression
uniimaelsetpreimafv ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) β†’ βˆͺ (𝐹 β€œ 𝑆) ∈ ran 𝐹)
Distinct variable groups:   π‘₯,𝐴,𝑧   π‘₯,𝐹,𝑧   π‘₯,𝑆,𝑧   π‘₯,𝑃
Allowed substitution hint:   𝑃(𝑧)

Proof of Theorem uniimaelsetpreimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (◑𝐹 β€œ {(πΉβ€˜π‘₯)})}
210nelsetpreimafv 46653 . . . 4 (𝐹 Fn 𝐴 β†’ βˆ… βˆ‰ 𝑃)
3 elnelne2 3053 . . . . . 6 ((𝑆 ∈ 𝑃 ∧ βˆ… βˆ‰ 𝑃) β†’ 𝑆 β‰  βˆ…)
4 n0 4342 . . . . . 6 (𝑆 β‰  βˆ… ↔ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
53, 4sylib 217 . . . . 5 ((𝑆 ∈ 𝑃 ∧ βˆ… βˆ‰ 𝑃) β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
65expcom 413 . . . 4 (βˆ… βˆ‰ 𝑃 β†’ (𝑆 ∈ 𝑃 β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆))
72, 6syl 17 . . 3 (𝐹 Fn 𝐴 β†’ (𝑆 ∈ 𝑃 β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆))
87imp 406 . 2 ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
91imaelsetpreimafv 46658 . . . . . 6 ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑦 ∈ 𝑆) β†’ (𝐹 β€œ 𝑆) = {(πΉβ€˜π‘¦)})
1093expa 1116 . . . . 5 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ (𝐹 β€œ 𝑆) = {(πΉβ€˜π‘¦)})
1110unieqd 4916 . . . 4 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ βˆͺ (𝐹 β€œ 𝑆) = βˆͺ {(πΉβ€˜π‘¦)})
12 fvex 6904 . . . . 5 (πΉβ€˜π‘¦) ∈ V
1312unisn 4924 . . . 4 βˆͺ {(πΉβ€˜π‘¦)} = (πΉβ€˜π‘¦)
1411, 13eqtrdi 2783 . . 3 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ βˆͺ (𝐹 β€œ 𝑆) = (πΉβ€˜π‘¦))
15 dffn3 6729 . . . . . 6 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟢ran 𝐹)
1615biimpi 215 . . . . 5 (𝐹 Fn 𝐴 β†’ 𝐹:𝐴⟢ran 𝐹)
1716ad2antrr 725 . . . 4 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ 𝐹:𝐴⟢ran 𝐹)
181elsetpreimafvssdm 46649 . . . . 5 ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) β†’ 𝑆 βŠ† 𝐴)
1918sselda 3978 . . . 4 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ 𝐴)
2017, 19ffvelcdmd 7089 . . 3 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ (πΉβ€˜π‘¦) ∈ ran 𝐹)
2114, 20eqeltrd 2828 . 2 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ βˆͺ (𝐹 β€œ 𝑆) ∈ ran 𝐹)
228, 21exlimddv 1931 1 ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) β†’ βˆͺ (𝐹 β€œ 𝑆) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534  βˆƒwex 1774   ∈ wcel 2099  {cab 2704   β‰  wne 2935   βˆ‰ wnel 3041  βˆƒwrex 3065  βˆ…c0 4318  {csn 4624  βˆͺ cuni 4903  β—‘ccnv 5671  ran crn 5673   β€œ cima 5675   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550
This theorem is referenced by:  imasetpreimafvbijlemf  46664  fundcmpsurbijinjpreimafv  46670
  Copyright terms: Public domain W3C validator