![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimaelsetpreimafv | Structured version Visualization version GIF version |
Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
uniimaelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | 0nelsetpreimafv 47315 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
3 | elnelne2 3056 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → 𝑆 ≠ ∅) | |
4 | n0 4359 | . . . . . 6 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑆) | |
5 | 3, 4 | sylib 218 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → ∃𝑦 𝑦 ∈ 𝑆) |
6 | 5 | expcom 413 | . . . 4 ⊢ (∅ ∉ 𝑃 → (𝑆 ∈ 𝑃 → ∃𝑦 𝑦 ∈ 𝑆)) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑆 ∈ 𝑃 → ∃𝑦 𝑦 ∈ 𝑆)) |
8 | 7 | imp 406 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑦 𝑦 ∈ 𝑆) |
9 | 1 | imaelsetpreimafv 47320 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑦 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑦)}) |
10 | 9 | 3expa 1117 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑦)}) |
11 | 10 | unieqd 4925 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) = ∪ {(𝐹‘𝑦)}) |
12 | fvex 6920 | . . . . 5 ⊢ (𝐹‘𝑦) ∈ V | |
13 | 12 | unisn 4931 | . . . 4 ⊢ ∪ {(𝐹‘𝑦)} = (𝐹‘𝑦) |
14 | 11, 13 | eqtrdi 2791 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑦)) |
15 | dffn3 6749 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
16 | 15 | biimpi 216 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴⟶ran 𝐹) |
17 | 16 | ad2antrr 726 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → 𝐹:𝐴⟶ran 𝐹) |
18 | 1 | elsetpreimafvssdm 47311 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
19 | 18 | sselda 3995 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐴) |
20 | 17, 19 | ffvelcdmd 7105 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → (𝐹‘𝑦) ∈ ran 𝐹) |
21 | 14, 20 | eqeltrd 2839 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
22 | 8, 21 | exlimddv 1933 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 {cab 2712 ≠ wne 2938 ∉ wnel 3044 ∃wrex 3068 ∅c0 4339 {csn 4631 ∪ cuni 4912 ◡ccnv 5688 ran crn 5690 “ cima 5692 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 |
This theorem is referenced by: imasetpreimafvbijlemf 47326 fundcmpsurbijinjpreimafv 47332 |
Copyright terms: Public domain | W3C validator |