Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimaelsetpreimafv Structured version   Visualization version   GIF version

Theorem uniimaelsetpreimafv 44736
Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
uniimaelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃) → (𝐹𝑆) ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑃
Allowed substitution hint:   𝑃(𝑧)

Proof of Theorem uniimaelsetpreimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
210nelsetpreimafv 44730 . . . 4 (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
3 elnelne2 3059 . . . . . 6 ((𝑆𝑃 ∧ ∅ ∉ 𝑃) → 𝑆 ≠ ∅)
4 n0 4277 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
53, 4sylib 217 . . . . 5 ((𝑆𝑃 ∧ ∅ ∉ 𝑃) → ∃𝑦 𝑦𝑆)
65expcom 413 . . . 4 (∅ ∉ 𝑃 → (𝑆𝑃 → ∃𝑦 𝑦𝑆))
72, 6syl 17 . . 3 (𝐹 Fn 𝐴 → (𝑆𝑃 → ∃𝑦 𝑦𝑆))
87imp 406 . 2 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑦 𝑦𝑆)
91imaelsetpreimafv 44735 . . . . . 6 ((𝐹 Fn 𝐴𝑆𝑃𝑦𝑆) → (𝐹𝑆) = {(𝐹𝑦)})
1093expa 1116 . . . . 5 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) = {(𝐹𝑦)})
1110unieqd 4850 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) = {(𝐹𝑦)})
12 fvex 6769 . . . . 5 (𝐹𝑦) ∈ V
1312unisn 4858 . . . 4 {(𝐹𝑦)} = (𝐹𝑦)
1411, 13eqtrdi 2795 . . 3 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) = (𝐹𝑦))
15 dffn3 6597 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1615biimpi 215 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1716ad2antrr 722 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → 𝐹:𝐴⟶ran 𝐹)
181elsetpreimafvssdm 44726 . . . . 5 ((𝐹 Fn 𝐴𝑆𝑃) → 𝑆𝐴)
1918sselda 3917 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → 𝑦𝐴)
2017, 19ffvelrnd 6944 . . 3 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑦) ∈ ran 𝐹)
2114, 20eqeltrd 2839 . 2 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) ∈ ran 𝐹)
228, 21exlimddv 1939 1 ((𝐹 Fn 𝐴𝑆𝑃) → (𝐹𝑆) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wnel 3048  wrex 3064  c0 4253  {csn 4558   cuni 4836  ccnv 5579  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  imasetpreimafvbijlemf  44741  fundcmpsurbijinjpreimafv  44747
  Copyright terms: Public domain W3C validator