Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimaelsetpreimafv Structured version   Visualization version   GIF version

Theorem uniimaelsetpreimafv 46799
Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (◑𝐹 β€œ {(πΉβ€˜π‘₯)})}
Assertion
Ref Expression
uniimaelsetpreimafv ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) β†’ βˆͺ (𝐹 β€œ 𝑆) ∈ ran 𝐹)
Distinct variable groups:   π‘₯,𝐴,𝑧   π‘₯,𝐹,𝑧   π‘₯,𝑆,𝑧   π‘₯,𝑃
Allowed substitution hint:   𝑃(𝑧)

Proof of Theorem uniimaelsetpreimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = (◑𝐹 β€œ {(πΉβ€˜π‘₯)})}
210nelsetpreimafv 46793 . . . 4 (𝐹 Fn 𝐴 β†’ βˆ… βˆ‰ 𝑃)
3 elnelne2 3048 . . . . . 6 ((𝑆 ∈ 𝑃 ∧ βˆ… βˆ‰ 𝑃) β†’ 𝑆 β‰  βˆ…)
4 n0 4347 . . . . . 6 (𝑆 β‰  βˆ… ↔ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
53, 4sylib 217 . . . . 5 ((𝑆 ∈ 𝑃 ∧ βˆ… βˆ‰ 𝑃) β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
65expcom 412 . . . 4 (βˆ… βˆ‰ 𝑃 β†’ (𝑆 ∈ 𝑃 β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆))
72, 6syl 17 . . 3 (𝐹 Fn 𝐴 β†’ (𝑆 ∈ 𝑃 β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆))
87imp 405 . 2 ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) β†’ βˆƒπ‘¦ 𝑦 ∈ 𝑆)
91imaelsetpreimafv 46798 . . . . . 6 ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑦 ∈ 𝑆) β†’ (𝐹 β€œ 𝑆) = {(πΉβ€˜π‘¦)})
1093expa 1115 . . . . 5 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ (𝐹 β€œ 𝑆) = {(πΉβ€˜π‘¦)})
1110unieqd 4921 . . . 4 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ βˆͺ (𝐹 β€œ 𝑆) = βˆͺ {(πΉβ€˜π‘¦)})
12 fvex 6907 . . . . 5 (πΉβ€˜π‘¦) ∈ V
1312unisn 4929 . . . 4 βˆͺ {(πΉβ€˜π‘¦)} = (πΉβ€˜π‘¦)
1411, 13eqtrdi 2781 . . 3 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ βˆͺ (𝐹 β€œ 𝑆) = (πΉβ€˜π‘¦))
15 dffn3 6733 . . . . . 6 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟢ran 𝐹)
1615biimpi 215 . . . . 5 (𝐹 Fn 𝐴 β†’ 𝐹:𝐴⟢ran 𝐹)
1716ad2antrr 724 . . . 4 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ 𝐹:𝐴⟢ran 𝐹)
181elsetpreimafvssdm 46789 . . . . 5 ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) β†’ 𝑆 βŠ† 𝐴)
1918sselda 3977 . . . 4 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ 𝐴)
2017, 19ffvelcdmd 7092 . . 3 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ (πΉβ€˜π‘¦) ∈ ran 𝐹)
2114, 20eqeltrd 2825 . 2 (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) β†’ βˆͺ (𝐹 β€œ 𝑆) ∈ ran 𝐹)
228, 21exlimddv 1930 1 ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) β†’ βˆͺ (𝐹 β€œ 𝑆) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  {cab 2702   β‰  wne 2930   βˆ‰ wnel 3036  βˆƒwrex 3060  βˆ…c0 4323  {csn 4629  βˆͺ cuni 4908  β—‘ccnv 5676  ran crn 5678   β€œ cima 5680   Fn wfn 6542  βŸΆwf 6543  β€˜cfv 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-fv 6555
This theorem is referenced by:  imasetpreimafvbijlemf  46804  fundcmpsurbijinjpreimafv  46810
  Copyright terms: Public domain W3C validator