Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimaelsetpreimafv | Structured version Visualization version GIF version |
Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
uniimaelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | 0nelsetpreimafv 44730 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
3 | elnelne2 3059 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → 𝑆 ≠ ∅) | |
4 | n0 4277 | . . . . . 6 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑆) | |
5 | 3, 4 | sylib 217 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → ∃𝑦 𝑦 ∈ 𝑆) |
6 | 5 | expcom 413 | . . . 4 ⊢ (∅ ∉ 𝑃 → (𝑆 ∈ 𝑃 → ∃𝑦 𝑦 ∈ 𝑆)) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑆 ∈ 𝑃 → ∃𝑦 𝑦 ∈ 𝑆)) |
8 | 7 | imp 406 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑦 𝑦 ∈ 𝑆) |
9 | 1 | imaelsetpreimafv 44735 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑦 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑦)}) |
10 | 9 | 3expa 1116 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑦)}) |
11 | 10 | unieqd 4850 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) = ∪ {(𝐹‘𝑦)}) |
12 | fvex 6769 | . . . . 5 ⊢ (𝐹‘𝑦) ∈ V | |
13 | 12 | unisn 4858 | . . . 4 ⊢ ∪ {(𝐹‘𝑦)} = (𝐹‘𝑦) |
14 | 11, 13 | eqtrdi 2795 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑦)) |
15 | dffn3 6597 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
16 | 15 | biimpi 215 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴⟶ran 𝐹) |
17 | 16 | ad2antrr 722 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → 𝐹:𝐴⟶ran 𝐹) |
18 | 1 | elsetpreimafvssdm 44726 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
19 | 18 | sselda 3917 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐴) |
20 | 17, 19 | ffvelrnd 6944 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → (𝐹‘𝑦) ∈ ran 𝐹) |
21 | 14, 20 | eqeltrd 2839 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
22 | 8, 21 | exlimddv 1939 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ∉ wnel 3048 ∃wrex 3064 ∅c0 4253 {csn 4558 ∪ cuni 4836 ◡ccnv 5579 ran crn 5581 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: imasetpreimafvbijlemf 44741 fundcmpsurbijinjpreimafv 44747 |
Copyright terms: Public domain | W3C validator |