Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimaelsetpreimafv Structured version   Visualization version   GIF version

Theorem uniimaelsetpreimafv 47270
Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
uniimaelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃) → (𝐹𝑆) ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑃
Allowed substitution hint:   𝑃(𝑧)

Proof of Theorem uniimaelsetpreimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
210nelsetpreimafv 47264 . . . 4 (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
3 elnelne2 3064 . . . . . 6 ((𝑆𝑃 ∧ ∅ ∉ 𝑃) → 𝑆 ≠ ∅)
4 n0 4376 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
53, 4sylib 218 . . . . 5 ((𝑆𝑃 ∧ ∅ ∉ 𝑃) → ∃𝑦 𝑦𝑆)
65expcom 413 . . . 4 (∅ ∉ 𝑃 → (𝑆𝑃 → ∃𝑦 𝑦𝑆))
72, 6syl 17 . . 3 (𝐹 Fn 𝐴 → (𝑆𝑃 → ∃𝑦 𝑦𝑆))
87imp 406 . 2 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑦 𝑦𝑆)
91imaelsetpreimafv 47269 . . . . . 6 ((𝐹 Fn 𝐴𝑆𝑃𝑦𝑆) → (𝐹𝑆) = {(𝐹𝑦)})
1093expa 1118 . . . . 5 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) = {(𝐹𝑦)})
1110unieqd 4944 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) = {(𝐹𝑦)})
12 fvex 6933 . . . . 5 (𝐹𝑦) ∈ V
1312unisn 4950 . . . 4 {(𝐹𝑦)} = (𝐹𝑦)
1411, 13eqtrdi 2796 . . 3 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) = (𝐹𝑦))
15 dffn3 6759 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1615biimpi 216 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1716ad2antrr 725 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → 𝐹:𝐴⟶ran 𝐹)
181elsetpreimafvssdm 47260 . . . . 5 ((𝐹 Fn 𝐴𝑆𝑃) → 𝑆𝐴)
1918sselda 4008 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → 𝑦𝐴)
2017, 19ffvelcdmd 7119 . . 3 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑦) ∈ ran 𝐹)
2114, 20eqeltrd 2844 . 2 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) ∈ ran 𝐹)
228, 21exlimddv 1934 1 ((𝐹 Fn 𝐴𝑆𝑃) → (𝐹𝑆) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wnel 3052  wrex 3076  c0 4352  {csn 4648   cuni 4931  ccnv 5699  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  imasetpreimafvbijlemf  47275  fundcmpsurbijinjpreimafv  47281
  Copyright terms: Public domain W3C validator