Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimaelsetpreimafv Structured version   Visualization version   GIF version

Theorem uniimaelsetpreimafv 47506
Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
uniimaelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃) → (𝐹𝑆) ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑃
Allowed substitution hint:   𝑃(𝑧)

Proof of Theorem uniimaelsetpreimafv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
210nelsetpreimafv 47500 . . . 4 (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
3 elnelne2 3044 . . . . . 6 ((𝑆𝑃 ∧ ∅ ∉ 𝑃) → 𝑆 ≠ ∅)
4 n0 4300 . . . . . 6 (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦𝑆)
53, 4sylib 218 . . . . 5 ((𝑆𝑃 ∧ ∅ ∉ 𝑃) → ∃𝑦 𝑦𝑆)
65expcom 413 . . . 4 (∅ ∉ 𝑃 → (𝑆𝑃 → ∃𝑦 𝑦𝑆))
72, 6syl 17 . . 3 (𝐹 Fn 𝐴 → (𝑆𝑃 → ∃𝑦 𝑦𝑆))
87imp 406 . 2 ((𝐹 Fn 𝐴𝑆𝑃) → ∃𝑦 𝑦𝑆)
91imaelsetpreimafv 47505 . . . . . 6 ((𝐹 Fn 𝐴𝑆𝑃𝑦𝑆) → (𝐹𝑆) = {(𝐹𝑦)})
1093expa 1118 . . . . 5 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) = {(𝐹𝑦)})
1110unieqd 4869 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) = {(𝐹𝑦)})
12 fvex 6835 . . . . 5 (𝐹𝑦) ∈ V
1312unisn 4875 . . . 4 {(𝐹𝑦)} = (𝐹𝑦)
1411, 13eqtrdi 2782 . . 3 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) = (𝐹𝑦))
15 dffn3 6663 . . . . . 6 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1615biimpi 216 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
1716ad2antrr 726 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → 𝐹:𝐴⟶ran 𝐹)
181elsetpreimafvssdm 47496 . . . . 5 ((𝐹 Fn 𝐴𝑆𝑃) → 𝑆𝐴)
1918sselda 3929 . . . 4 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → 𝑦𝐴)
2017, 19ffvelcdmd 7018 . . 3 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑦) ∈ ran 𝐹)
2114, 20eqeltrd 2831 . 2 (((𝐹 Fn 𝐴𝑆𝑃) ∧ 𝑦𝑆) → (𝐹𝑆) ∈ ran 𝐹)
228, 21exlimddv 1936 1 ((𝐹 Fn 𝐴𝑆𝑃) → (𝐹𝑆) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wnel 3032  wrex 3056  c0 4280  {csn 4573   cuni 4856  ccnv 5613  ran crn 5615  cima 5617   Fn wfn 6476  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  imasetpreimafvbijlemf  47511  fundcmpsurbijinjpreimafv  47517
  Copyright terms: Public domain W3C validator