![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimaelsetpreimafv | Structured version Visualization version GIF version |
Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
uniimaelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | 0nelsetpreimafv 47264 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
3 | elnelne2 3064 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → 𝑆 ≠ ∅) | |
4 | n0 4376 | . . . . . 6 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑆) | |
5 | 3, 4 | sylib 218 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → ∃𝑦 𝑦 ∈ 𝑆) |
6 | 5 | expcom 413 | . . . 4 ⊢ (∅ ∉ 𝑃 → (𝑆 ∈ 𝑃 → ∃𝑦 𝑦 ∈ 𝑆)) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑆 ∈ 𝑃 → ∃𝑦 𝑦 ∈ 𝑆)) |
8 | 7 | imp 406 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑦 𝑦 ∈ 𝑆) |
9 | 1 | imaelsetpreimafv 47269 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑦 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑦)}) |
10 | 9 | 3expa 1118 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑦)}) |
11 | 10 | unieqd 4944 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) = ∪ {(𝐹‘𝑦)}) |
12 | fvex 6933 | . . . . 5 ⊢ (𝐹‘𝑦) ∈ V | |
13 | 12 | unisn 4950 | . . . 4 ⊢ ∪ {(𝐹‘𝑦)} = (𝐹‘𝑦) |
14 | 11, 13 | eqtrdi 2796 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑦)) |
15 | dffn3 6759 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
16 | 15 | biimpi 216 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴⟶ran 𝐹) |
17 | 16 | ad2antrr 725 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → 𝐹:𝐴⟶ran 𝐹) |
18 | 1 | elsetpreimafvssdm 47260 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
19 | 18 | sselda 4008 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐴) |
20 | 17, 19 | ffvelcdmd 7119 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → (𝐹‘𝑦) ∈ ran 𝐹) |
21 | 14, 20 | eqeltrd 2844 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
22 | 8, 21 | exlimddv 1934 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ≠ wne 2946 ∉ wnel 3052 ∃wrex 3076 ∅c0 4352 {csn 4648 ∪ cuni 4931 ◡ccnv 5699 ran crn 5701 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: imasetpreimafvbijlemf 47275 fundcmpsurbijinjpreimafv 47281 |
Copyright terms: Public domain | W3C validator |