Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimaelsetpreimafv | Structured version Visualization version GIF version |
Description: The union of the image of an element of the preimage of a function value is an element of the range of the function. (Contributed by AV, 5-Mar-2024.) (Revised by AV, 22-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
uniimaelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | 0nelsetpreimafv 44842 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
3 | elnelne2 3060 | . . . . . 6 ⊢ ((𝑆 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → 𝑆 ≠ ∅) | |
4 | n0 4280 | . . . . . 6 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑆) | |
5 | 3, 4 | sylib 217 | . . . . 5 ⊢ ((𝑆 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → ∃𝑦 𝑦 ∈ 𝑆) |
6 | 5 | expcom 414 | . . . 4 ⊢ (∅ ∉ 𝑃 → (𝑆 ∈ 𝑃 → ∃𝑦 𝑦 ∈ 𝑆)) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑆 ∈ 𝑃 → ∃𝑦 𝑦 ∈ 𝑆)) |
8 | 7 | imp 407 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∃𝑦 𝑦 ∈ 𝑆) |
9 | 1 | imaelsetpreimafv 44847 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃 ∧ 𝑦 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑦)}) |
10 | 9 | 3expa 1117 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → (𝐹 “ 𝑆) = {(𝐹‘𝑦)}) |
11 | 10 | unieqd 4853 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) = ∪ {(𝐹‘𝑦)}) |
12 | fvex 6787 | . . . . 5 ⊢ (𝐹‘𝑦) ∈ V | |
13 | 12 | unisn 4861 | . . . 4 ⊢ ∪ {(𝐹‘𝑦)} = (𝐹‘𝑦) |
14 | 11, 13 | eqtrdi 2794 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) = (𝐹‘𝑦)) |
15 | dffn3 6613 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
16 | 15 | biimpi 215 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴⟶ran 𝐹) |
17 | 16 | ad2antrr 723 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → 𝐹:𝐴⟶ran 𝐹) |
18 | 1 | elsetpreimafvssdm 44838 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → 𝑆 ⊆ 𝐴) |
19 | 18 | sselda 3921 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐴) |
20 | 17, 19 | ffvelrnd 6962 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → (𝐹‘𝑦) ∈ ran 𝐹) |
21 | 14, 20 | eqeltrd 2839 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) ∧ 𝑦 ∈ 𝑆) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
22 | 8, 21 | exlimddv 1938 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝑃) → ∪ (𝐹 “ 𝑆) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ≠ wne 2943 ∉ wnel 3049 ∃wrex 3065 ∅c0 4256 {csn 4561 ∪ cuni 4839 ◡ccnv 5588 ran crn 5590 “ cima 5592 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 |
This theorem is referenced by: imasetpreimafvbijlemf 44853 fundcmpsurbijinjpreimafv 44859 |
Copyright terms: Public domain | W3C validator |