Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnmlid Structured version   Visualization version   GIF version

Theorem 2zrngnmlid 48236
Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnmlid 𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎
Distinct variable groups:   𝑥,𝑧   𝐸,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥,𝑧   𝑥,𝐸,𝑧   𝑀,𝑎,𝑏
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnmlid
StepHypRef Expression
1 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
212even 48220 . . . 4 2 ∈ 𝐸
32a1i 11 . . 3 (𝑏𝐸 → 2 ∈ 𝐸)
4 oveq2 7377 . . . . 5 (𝑎 = 2 → (𝑏 · 𝑎) = (𝑏 · 2))
5 id 22 . . . . 5 (𝑎 = 2 → 𝑎 = 2)
64, 5neeq12d 2986 . . . 4 (𝑎 = 2 → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2))
76adantl 481 . . 3 ((𝑏𝐸𝑎 = 2) → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2))
8 elrabi 3651 . . . . . 6 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ)
98zcnd 12615 . . . . 5 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ)
109, 1eleq2s 2846 . . . 4 (𝑏𝐸𝑏 ∈ ℂ)
1111neven 48219 . . . . . . . 8 1 ∉ 𝐸
12 elnelne2 3041 . . . . . . . 8 ((𝑏𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1)
1311, 12mpan2 691 . . . . . . 7 (𝑏𝐸𝑏 ≠ 1)
1413adantr 480 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ≠ 1)
15 simpr 484 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
16 2cnd 12240 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → 2 ∈ ℂ)
17 2ne0 12266 . . . . . . . 8 2 ≠ 0
1817a1i 11 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → 2 ≠ 0)
1915, 16, 18divcan4d 11940 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) = 𝑏)
20 2cnne0 12367 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
21 divid 11844 . . . . . . 7 ((2 ∈ ℂ ∧ 2 ≠ 0) → (2 / 2) = 1)
2220, 21mp1i 13 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → (2 / 2) = 1)
2314, 19, 223netr4d 3002 . . . . 5 ((𝑏𝐸𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) ≠ (2 / 2))
2415, 16mulcld 11170 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → (𝑏 · 2) ∈ ℂ)
2520a1i 11 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → (2 ∈ ℂ ∧ 2 ≠ 0))
26 div11 11841 . . . . . . . 8 (((𝑏 · 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2))
2724, 16, 25, 26syl3anc 1373 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2))
2827biimprd 248 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → ((𝑏 · 2) = 2 → ((𝑏 · 2) / 2) = (2 / 2)))
2928necon3d 2946 . . . . 5 ((𝑏𝐸𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) ≠ (2 / 2) → (𝑏 · 2) ≠ 2))
3023, 29mpd 15 . . . 4 ((𝑏𝐸𝑏 ∈ ℂ) → (𝑏 · 2) ≠ 2)
3110, 30mpdan 687 . . 3 (𝑏𝐸 → (𝑏 · 2) ≠ 2)
323, 7, 31rspcedvd 3587 . 2 (𝑏𝐸 → ∃𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎)
3332rgen 3046 1 𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  {crab 3402  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   · cmul 11049   / cdiv 11811  2c2 12217  cz 12505  s cress 17176  mulGrpcmgp 20060  fldccnfld 21296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506
This theorem is referenced by:  2zrngnring  48239
  Copyright terms: Public domain W3C validator