| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngnmlid | Structured version Visualization version GIF version | ||
| Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
| 2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| 2zrngnmlid | ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2zrng.e | . . . . 5 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 2 | 1 | 2even 48181 | . . . 4 ⊢ 2 ∈ 𝐸 |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑏 ∈ 𝐸 → 2 ∈ 𝐸) |
| 4 | oveq2 7418 | . . . . 5 ⊢ (𝑎 = 2 → (𝑏 · 𝑎) = (𝑏 · 2)) | |
| 5 | id 22 | . . . . 5 ⊢ (𝑎 = 2 → 𝑎 = 2) | |
| 6 | 4, 5 | neeq12d 2994 | . . . 4 ⊢ (𝑎 = 2 → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2)) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑎 = 2) → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2)) |
| 8 | elrabi 3671 | . . . . . 6 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
| 9 | 8 | zcnd 12703 | . . . . 5 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
| 10 | 9, 1 | eleq2s 2853 | . . . 4 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
| 11 | 1 | 1neven 48180 | . . . . . . . 8 ⊢ 1 ∉ 𝐸 |
| 12 | elnelne2 3049 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1) | |
| 13 | 11, 12 | mpan2 691 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ≠ 1) |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 𝑏 ≠ 1) |
| 15 | simpr 484 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 𝑏 ∈ ℂ) | |
| 16 | 2cnd 12323 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 2 ∈ ℂ) | |
| 17 | 2ne0 12349 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 2 ≠ 0) |
| 19 | 15, 16, 18 | divcan4d 12028 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) = 𝑏) |
| 20 | 2cnne0 12455 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 21 | divid 11932 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (2 / 2) = 1) | |
| 22 | 20, 21 | mp1i 13 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (2 / 2) = 1) |
| 23 | 14, 19, 22 | 3netr4d 3010 | . . . . 5 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) ≠ (2 / 2)) |
| 24 | 15, 16 | mulcld 11260 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (𝑏 · 2) ∈ ℂ) |
| 25 | 20 | a1i 11 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 26 | div11 11929 | . . . . . . . 8 ⊢ (((𝑏 · 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2)) | |
| 27 | 24, 16, 25, 26 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2)) |
| 28 | 27 | biimprd 248 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) = 2 → ((𝑏 · 2) / 2) = (2 / 2))) |
| 29 | 28 | necon3d 2954 | . . . . 5 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) ≠ (2 / 2) → (𝑏 · 2) ≠ 2)) |
| 30 | 23, 29 | mpd 15 | . . . 4 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (𝑏 · 2) ≠ 2) |
| 31 | 10, 30 | mpdan 687 | . . 3 ⊢ (𝑏 ∈ 𝐸 → (𝑏 · 2) ≠ 2) |
| 32 | 3, 7, 31 | rspcedvd 3608 | . 2 ⊢ (𝑏 ∈ 𝐸 → ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎) |
| 33 | 32 | rgen 3054 | 1 ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∉ wnel 3037 ∀wral 3052 ∃wrex 3061 {crab 3420 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 · cmul 11139 / cdiv 11899 2c2 12300 ℤcz 12593 ↾s cress 17256 mulGrpcmgp 20105 ℂfldccnfld 21320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 |
| This theorem is referenced by: 2zrngnring 48200 |
| Copyright terms: Public domain | W3C validator |