Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngnmlid | Structured version Visualization version GIF version |
Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
2zrngnmlid | ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . . . 5 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 1 | 2even 45491 | . . . 4 ⊢ 2 ∈ 𝐸 |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑏 ∈ 𝐸 → 2 ∈ 𝐸) |
4 | oveq2 7283 | . . . . 5 ⊢ (𝑎 = 2 → (𝑏 · 𝑎) = (𝑏 · 2)) | |
5 | id 22 | . . . . 5 ⊢ (𝑎 = 2 → 𝑎 = 2) | |
6 | 4, 5 | neeq12d 3005 | . . . 4 ⊢ (𝑎 = 2 → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2)) |
7 | 6 | adantl 482 | . . 3 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑎 = 2) → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2)) |
8 | elrabi 3618 | . . . . . 6 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
9 | 8 | zcnd 12427 | . . . . 5 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
10 | 9, 1 | eleq2s 2857 | . . . 4 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
11 | 1 | 1neven 45490 | . . . . . . . 8 ⊢ 1 ∉ 𝐸 |
12 | elnelne2 3060 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1) | |
13 | 11, 12 | mpan2 688 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ≠ 1) |
14 | 13 | adantr 481 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 𝑏 ≠ 1) |
15 | simpr 485 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 𝑏 ∈ ℂ) | |
16 | 2cnd 12051 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 2 ∈ ℂ) | |
17 | 2ne0 12077 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 2 ≠ 0) |
19 | 15, 16, 18 | divcan4d 11757 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) = 𝑏) |
20 | 2cnne0 12183 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
21 | divid 11662 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (2 / 2) = 1) | |
22 | 20, 21 | mp1i 13 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (2 / 2) = 1) |
23 | 14, 19, 22 | 3netr4d 3021 | . . . . 5 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) ≠ (2 / 2)) |
24 | 15, 16 | mulcld 10995 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (𝑏 · 2) ∈ ℂ) |
25 | 20 | a1i 11 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (2 ∈ ℂ ∧ 2 ≠ 0)) |
26 | div11 11661 | . . . . . . . 8 ⊢ (((𝑏 · 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2)) | |
27 | 24, 16, 25, 26 | syl3anc 1370 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2)) |
28 | 27 | biimprd 247 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) = 2 → ((𝑏 · 2) / 2) = (2 / 2))) |
29 | 28 | necon3d 2964 | . . . . 5 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) ≠ (2 / 2) → (𝑏 · 2) ≠ 2)) |
30 | 23, 29 | mpd 15 | . . . 4 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (𝑏 · 2) ≠ 2) |
31 | 10, 30 | mpdan 684 | . . 3 ⊢ (𝑏 ∈ 𝐸 → (𝑏 · 2) ≠ 2) |
32 | 3, 7, 31 | rspcedvd 3563 | . 2 ⊢ (𝑏 ∈ 𝐸 → ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎) |
33 | 32 | rgen 3074 | 1 ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∉ wnel 3049 ∀wral 3064 ∃wrex 3065 {crab 3068 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 · cmul 10876 / cdiv 11632 2c2 12028 ℤcz 12319 ↾s cress 16941 mulGrpcmgp 19720 ℂfldccnfld 20597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 |
This theorem is referenced by: 2zrngnring 45510 |
Copyright terms: Public domain | W3C validator |