Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnmlid Structured version   Visualization version   GIF version

Theorem 2zrngnmlid 46687
Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnmlid 𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎
Distinct variable groups:   𝑥,𝑧   𝐸,𝑎,𝑏   𝑅,𝑎,𝑏,𝑥,𝑧   𝑥,𝐸,𝑧   𝑀,𝑎,𝑏
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnmlid
StepHypRef Expression
1 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
212even 46671 . . . 4 2 ∈ 𝐸
32a1i 11 . . 3 (𝑏𝐸 → 2 ∈ 𝐸)
4 oveq2 7404 . . . . 5 (𝑎 = 2 → (𝑏 · 𝑎) = (𝑏 · 2))
5 id 22 . . . . 5 (𝑎 = 2 → 𝑎 = 2)
64, 5neeq12d 3003 . . . 4 (𝑎 = 2 → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2))
76adantl 483 . . 3 ((𝑏𝐸𝑎 = 2) → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2))
8 elrabi 3675 . . . . . 6 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ)
98zcnd 12654 . . . . 5 (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ)
109, 1eleq2s 2852 . . . 4 (𝑏𝐸𝑏 ∈ ℂ)
1111neven 46670 . . . . . . . 8 1 ∉ 𝐸
12 elnelne2 3059 . . . . . . . 8 ((𝑏𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1)
1311, 12mpan2 690 . . . . . . 7 (𝑏𝐸𝑏 ≠ 1)
1413adantr 482 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ≠ 1)
15 simpr 486 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → 𝑏 ∈ ℂ)
16 2cnd 12277 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → 2 ∈ ℂ)
17 2ne0 12303 . . . . . . . 8 2 ≠ 0
1817a1i 11 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → 2 ≠ 0)
1915, 16, 18divcan4d 11983 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) = 𝑏)
20 2cnne0 12409 . . . . . . 7 (2 ∈ ℂ ∧ 2 ≠ 0)
21 divid 11888 . . . . . . 7 ((2 ∈ ℂ ∧ 2 ≠ 0) → (2 / 2) = 1)
2220, 21mp1i 13 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → (2 / 2) = 1)
2314, 19, 223netr4d 3019 . . . . 5 ((𝑏𝐸𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) ≠ (2 / 2))
2415, 16mulcld 11221 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → (𝑏 · 2) ∈ ℂ)
2520a1i 11 . . . . . . . 8 ((𝑏𝐸𝑏 ∈ ℂ) → (2 ∈ ℂ ∧ 2 ≠ 0))
26 div11 11887 . . . . . . . 8 (((𝑏 · 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2))
2724, 16, 25, 26syl3anc 1372 . . . . . . 7 ((𝑏𝐸𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2))
2827biimprd 247 . . . . . 6 ((𝑏𝐸𝑏 ∈ ℂ) → ((𝑏 · 2) = 2 → ((𝑏 · 2) / 2) = (2 / 2)))
2928necon3d 2962 . . . . 5 ((𝑏𝐸𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) ≠ (2 / 2) → (𝑏 · 2) ≠ 2))
3023, 29mpd 15 . . . 4 ((𝑏𝐸𝑏 ∈ ℂ) → (𝑏 · 2) ≠ 2)
3110, 30mpdan 686 . . 3 (𝑏𝐸 → (𝑏 · 2) ≠ 2)
323, 7, 31rspcedvd 3613 . 2 (𝑏𝐸 → ∃𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎)
3332rgen 3064 1 𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wnel 3047  wral 3062  wrex 3071  {crab 3433  cfv 6535  (class class class)co 7396  cc 11095  0cc0 11097  1c1 11098   · cmul 11102   / cdiv 11858  2c2 12254  cz 12545  s cress 17160  mulGrpcmgp 19970  fldccnfld 20918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-n0 12460  df-z 12546
This theorem is referenced by:  2zrngnring  46690
  Copyright terms: Public domain W3C validator