![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngnmlid | Structured version Visualization version GIF version |
Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
2zrngnmlid | ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2zrng.e | . . . . 5 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
2 | 1 | 2even 43636 | . . . 4 ⊢ 2 ∈ 𝐸 |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑏 ∈ 𝐸 → 2 ∈ 𝐸) |
4 | oveq2 7015 | . . . . 5 ⊢ (𝑎 = 2 → (𝑏 · 𝑎) = (𝑏 · 2)) | |
5 | id 22 | . . . . 5 ⊢ (𝑎 = 2 → 𝑎 = 2) | |
6 | 4, 5 | neeq12d 3043 | . . . 4 ⊢ (𝑎 = 2 → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2)) |
7 | 6 | adantl 482 | . . 3 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑎 = 2) → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2)) |
8 | elrabi 3608 | . . . . . 6 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
9 | 8 | zcnd 11926 | . . . . 5 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
10 | 9, 1 | eleq2s 2899 | . . . 4 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
11 | 1 | 1neven 43635 | . . . . . . . 8 ⊢ 1 ∉ 𝐸 |
12 | elnelne2 3099 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1) | |
13 | 11, 12 | mpan2 687 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ≠ 1) |
14 | 13 | adantr 481 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 𝑏 ≠ 1) |
15 | simpr 485 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 𝑏 ∈ ℂ) | |
16 | 2cnd 11552 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 2 ∈ ℂ) | |
17 | 2ne0 11578 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 2 ≠ 0) |
19 | 15, 16, 18 | divcan4d 11259 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) = 𝑏) |
20 | 2cnne0 11684 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
21 | divid 11164 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (2 / 2) = 1) | |
22 | 20, 21 | mp1i 13 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (2 / 2) = 1) |
23 | 14, 19, 22 | 3netr4d 3059 | . . . . 5 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) ≠ (2 / 2)) |
24 | 15, 16 | mulcld 10496 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (𝑏 · 2) ∈ ℂ) |
25 | 20 | a1i 11 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (2 ∈ ℂ ∧ 2 ≠ 0)) |
26 | div11 11163 | . . . . . . . 8 ⊢ (((𝑏 · 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2)) | |
27 | 24, 16, 25, 26 | syl3anc 1362 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2)) |
28 | 27 | biimprd 249 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) = 2 → ((𝑏 · 2) / 2) = (2 / 2))) |
29 | 28 | necon3d 3003 | . . . . 5 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) ≠ (2 / 2) → (𝑏 · 2) ≠ 2)) |
30 | 23, 29 | mpd 15 | . . . 4 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (𝑏 · 2) ≠ 2) |
31 | 10, 30 | mpdan 683 | . . 3 ⊢ (𝑏 ∈ 𝐸 → (𝑏 · 2) ≠ 2) |
32 | 3, 7, 31 | rspcedvd 3561 | . 2 ⊢ (𝑏 ∈ 𝐸 → ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎) |
33 | 32 | rgen 3113 | 1 ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 ∉ wnel 3088 ∀wral 3103 ∃wrex 3104 {crab 3107 ‘cfv 6217 (class class class)co 7007 ℂcc 10370 0cc0 10372 1c1 10373 · cmul 10377 / cdiv 11134 2c2 11529 ℤcz 11818 ↾s cress 16301 mulGrpcmgp 18917 ℂfldccnfld 20215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-nn 11476 df-2 11537 df-n0 11735 df-z 11819 |
This theorem is referenced by: 2zrngnring 43655 |
Copyright terms: Public domain | W3C validator |