| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngnmlid | Structured version Visualization version GIF version | ||
| Description: R has no multiplicative (left) identity. (Contributed by AV, 12-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
| 2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| 2zrngnmlid | ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2zrng.e | . . . . 5 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 2 | 1 | 2even 48220 | . . . 4 ⊢ 2 ∈ 𝐸 |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑏 ∈ 𝐸 → 2 ∈ 𝐸) |
| 4 | oveq2 7377 | . . . . 5 ⊢ (𝑎 = 2 → (𝑏 · 𝑎) = (𝑏 · 2)) | |
| 5 | id 22 | . . . . 5 ⊢ (𝑎 = 2 → 𝑎 = 2) | |
| 6 | 4, 5 | neeq12d 2986 | . . . 4 ⊢ (𝑎 = 2 → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2)) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑎 = 2) → ((𝑏 · 𝑎) ≠ 𝑎 ↔ (𝑏 · 2) ≠ 2)) |
| 8 | elrabi 3651 | . . . . . 6 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℤ) | |
| 9 | 8 | zcnd 12615 | . . . . 5 ⊢ (𝑏 ∈ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} → 𝑏 ∈ ℂ) |
| 10 | 9, 1 | eleq2s 2846 | . . . 4 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ∈ ℂ) |
| 11 | 1 | 1neven 48219 | . . . . . . . 8 ⊢ 1 ∉ 𝐸 |
| 12 | elnelne2 3041 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 1 ∉ 𝐸) → 𝑏 ≠ 1) | |
| 13 | 11, 12 | mpan2 691 | . . . . . . 7 ⊢ (𝑏 ∈ 𝐸 → 𝑏 ≠ 1) |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 𝑏 ≠ 1) |
| 15 | simpr 484 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 𝑏 ∈ ℂ) | |
| 16 | 2cnd 12240 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 2 ∈ ℂ) | |
| 17 | 2ne0 12266 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → 2 ≠ 0) |
| 19 | 15, 16, 18 | divcan4d 11940 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) = 𝑏) |
| 20 | 2cnne0 12367 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
| 21 | divid 11844 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0) → (2 / 2) = 1) | |
| 22 | 20, 21 | mp1i 13 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (2 / 2) = 1) |
| 23 | 14, 19, 22 | 3netr4d 3002 | . . . . 5 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) / 2) ≠ (2 / 2)) |
| 24 | 15, 16 | mulcld 11170 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (𝑏 · 2) ∈ ℂ) |
| 25 | 20 | a1i 11 | . . . . . . . 8 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 26 | div11 11841 | . . . . . . . 8 ⊢ (((𝑏 · 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2)) | |
| 27 | 24, 16, 25, 26 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) = (2 / 2) ↔ (𝑏 · 2) = 2)) |
| 28 | 27 | biimprd 248 | . . . . . 6 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → ((𝑏 · 2) = 2 → ((𝑏 · 2) / 2) = (2 / 2))) |
| 29 | 28 | necon3d 2946 | . . . . 5 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (((𝑏 · 2) / 2) ≠ (2 / 2) → (𝑏 · 2) ≠ 2)) |
| 30 | 23, 29 | mpd 15 | . . . 4 ⊢ ((𝑏 ∈ 𝐸 ∧ 𝑏 ∈ ℂ) → (𝑏 · 2) ≠ 2) |
| 31 | 10, 30 | mpdan 687 | . . 3 ⊢ (𝑏 ∈ 𝐸 → (𝑏 · 2) ≠ 2) |
| 32 | 3, 7, 31 | rspcedvd 3587 | . 2 ⊢ (𝑏 ∈ 𝐸 → ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎) |
| 33 | 32 | rgen 3046 | 1 ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∀wral 3044 ∃wrex 3053 {crab 3402 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 · cmul 11049 / cdiv 11811 2c2 12217 ℤcz 12505 ↾s cress 17176 mulGrpcmgp 20060 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 |
| This theorem is referenced by: 2zrngnring 48239 |
| Copyright terms: Public domain | W3C validator |