| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelrnfvne | Structured version Visualization version GIF version | ||
| Description: A function value cannot be any element not contained in the range of the function. (Contributed by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| nelrnfvne | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7009 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) ∈ ran 𝐹) | |
| 2 | elnelne2 3044 | . 2 ⊢ (((𝐹‘𝑋) ∈ ran 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) | |
| 3 | 1, 2 | stoic3 1777 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 dom cdm 5614 ran crn 5615 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fveqdmss 7011 fveqressseq 7012 |
| Copyright terms: Public domain | W3C validator |