MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelrnfvne Structured version   Visualization version   GIF version

Theorem nelrnfvne 7079
Description: A function value cannot be any element not contained in the range of the function. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
nelrnfvne ((Fun 𝐹𝑋 ∈ dom 𝐹𝑌 ∉ ran 𝐹) → (𝐹𝑋) ≠ 𝑌)

Proof of Theorem nelrnfvne
StepHypRef Expression
1 fvelrn 7078 . 2 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (𝐹𝑋) ∈ ran 𝐹)
2 elnelne2 3058 . 2 (((𝐹𝑋) ∈ ran 𝐹𝑌 ∉ ran 𝐹) → (𝐹𝑋) ≠ 𝑌)
31, 2stoic3 1778 1 ((Fun 𝐹𝑋 ∈ dom 𝐹𝑌 ∉ ran 𝐹) → (𝐹𝑋) ≠ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2106  wne 2940  wnel 3046  dom cdm 5676  ran crn 5677  Fun wfun 6537  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  fveqdmss  7080  fveqressseq  7081
  Copyright terms: Public domain W3C validator