| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelrnfvne | Structured version Visualization version GIF version | ||
| Description: A function value cannot be any element not contained in the range of the function. (Contributed by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| nelrnfvne | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7051 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) ∈ ran 𝐹) | |
| 2 | elnelne2 3042 | . 2 ⊢ (((𝐹‘𝑋) ∈ ran 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) | |
| 3 | 1, 2 | stoic3 1776 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2926 ∉ wnel 3030 dom cdm 5641 ran crn 5642 Fun wfun 6508 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: fveqdmss 7053 fveqressseq 7054 |
| Copyright terms: Public domain | W3C validator |