| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelrnfvne | Structured version Visualization version GIF version | ||
| Description: A function value cannot be any element not contained in the range of the function. (Contributed by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| nelrnfvne | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvelrn 7096 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) ∈ ran 𝐹) | |
| 2 | elnelne2 3058 | . 2 ⊢ (((𝐹‘𝑋) ∈ ran 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) | |
| 3 | 1, 2 | stoic3 1776 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ∧ 𝑌 ∉ ran 𝐹) → (𝐹‘𝑋) ≠ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2940 ∉ wnel 3046 dom cdm 5685 ran crn 5686 Fun wfun 6555 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 |
| This theorem is referenced by: fveqdmss 7098 fveqressseq 7099 |
| Copyright terms: Public domain | W3C validator |