Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv0nbfvbi Structured version   Visualization version   GIF version

Theorem afv0nbfvbi 47101
Description: The function's value at an argument is an element of a set if and only if the value of the alternative function at this argument is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afv0nbfvbi (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))

Proof of Theorem afv0nbfvbi
StepHypRef Expression
1 afvvfveq 47098 . . 3 ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹𝐴))
2 eleq1 2827 . . . 4 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
32biimpd 229 . . 3 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ 𝐵))
41, 3mpcom 38 . 2 ((𝐹'''𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ 𝐵)
5 elnelne2 3056 . . . . . 6 (((𝐹𝐴) ∈ 𝐵 ∧ ∅ ∉ 𝐵) → (𝐹𝐴) ≠ ∅)
65ancoms 458 . . . . 5 ((∅ ∉ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → (𝐹𝐴) ≠ ∅)
7 fvfundmfvn0 6950 . . . . 5 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
8 df-dfat 47069 . . . . . 6 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
9 afvfundmfveq 47088 . . . . . 6 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
108, 9sylbir 235 . . . . 5 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹𝐴))
11 eleq1 2827 . . . . . . 7 ((𝐹𝐴) = (𝐹'''𝐴) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵))
1211eqcoms 2743 . . . . . 6 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵))
1312biimpd 229 . . . . 5 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
146, 7, 10, 134syl 19 . . . 4 ((∅ ∉ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
1514ex 412 . . 3 (∅ ∉ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)))
1615pm2.43d 53 . 2 (∅ ∉ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
174, 16impbid2 226 1 (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wnel 3044  c0 4339  {csn 4631  dom cdm 5689  cres 5691  Fun wfun 6557  cfv 6563   defAt wdfat 47066  '''cafv 47067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-aiota 47035  df-dfat 47069  df-afv 47070
This theorem is referenced by:  aov0nbovbi  47145
  Copyright terms: Public domain W3C validator