Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv0nbfvbi | Structured version Visualization version GIF version |
Description: The function's value at an argument is an element of a set if and only if the value of the alternative function at this argument is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afv0nbfvbi | ⊢ (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afvvfveq 44527 | . . 3 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
2 | eleq1 2826 | . . . 4 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) | |
3 | 2 | biimpd 228 | . . 3 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) ∈ 𝐵 → (𝐹‘𝐴) ∈ 𝐵)) |
4 | 1, 3 | mpcom 38 | . 2 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹‘𝐴) ∈ 𝐵) |
5 | elnelne2 3059 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ ∅ ∉ 𝐵) → (𝐹‘𝐴) ≠ ∅) | |
6 | 5 | ancoms 458 | . . . . 5 ⊢ ((∅ ∉ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (𝐹‘𝐴) ≠ ∅) |
7 | fvfundmfvn0 6794 | . . . . 5 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
8 | df-dfat 44498 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
9 | afvfundmfveq 44517 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
10 | 8, 9 | sylbir 234 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹‘𝐴)) |
11 | eleq1 2826 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = (𝐹'''𝐴) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵)) | |
12 | 11 | eqcoms 2746 | . . . . . 6 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵)) |
13 | 12 | biimpd 228 | . . . . 5 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
14 | 6, 7, 10, 13 | 4syl 19 | . . . 4 ⊢ ((∅ ∉ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
15 | 14 | ex 412 | . . 3 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))) |
16 | 15 | pm2.43d 53 | . 2 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
17 | 4, 16 | impbid2 225 | 1 ⊢ (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∉ wnel 3048 ∅c0 4253 {csn 4558 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 ‘cfv 6418 defAt wdfat 44495 '''cafv 44496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-aiota 44464 df-dfat 44498 df-afv 44499 |
This theorem is referenced by: aov0nbovbi 44574 |
Copyright terms: Public domain | W3C validator |