Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv0nbfvbi Structured version   Visualization version   GIF version

Theorem afv0nbfvbi 47116
Description: The function's value at an argument is an element of a set if and only if the value of the alternative function at this argument is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afv0nbfvbi (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))

Proof of Theorem afv0nbfvbi
StepHypRef Expression
1 afvvfveq 47113 . . 3 ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹𝐴))
2 eleq1 2821 . . . 4 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
32biimpd 229 . . 3 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ 𝐵))
41, 3mpcom 38 . 2 ((𝐹'''𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ 𝐵)
5 elnelne2 3047 . . . . . 6 (((𝐹𝐴) ∈ 𝐵 ∧ ∅ ∉ 𝐵) → (𝐹𝐴) ≠ ∅)
65ancoms 458 . . . . 5 ((∅ ∉ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → (𝐹𝐴) ≠ ∅)
7 fvfundmfvn0 6916 . . . . 5 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
8 df-dfat 47084 . . . . . 6 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
9 afvfundmfveq 47103 . . . . . 6 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
108, 9sylbir 235 . . . . 5 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹𝐴))
11 eleq1 2821 . . . . . . 7 ((𝐹𝐴) = (𝐹'''𝐴) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵))
1211eqcoms 2742 . . . . . 6 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵))
1312biimpd 229 . . . . 5 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
146, 7, 10, 134syl 19 . . . 4 ((∅ ∉ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
1514ex 412 . . 3 (∅ ∉ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)))
1615pm2.43d 53 . 2 (∅ ∉ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
174, 16impbid2 226 1 (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wnel 3035  c0 4306  {csn 4599  dom cdm 5652  cres 5654  Fun wfun 6522  cfv 6528   defAt wdfat 47081  '''cafv 47082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-br 5118  df-opab 5180  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-res 5664  df-iota 6481  df-fun 6530  df-fv 6536  df-aiota 47050  df-dfat 47084  df-afv 47085
This theorem is referenced by:  aov0nbovbi  47160
  Copyright terms: Public domain W3C validator