| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv0nbfvbi | Structured version Visualization version GIF version | ||
| Description: The function's value at an argument is an element of a set if and only if the value of the alternative function at this argument is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| afv0nbfvbi | ⊢ (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afvvfveq 47106 | . . 3 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
| 2 | eleq1 2821 | . . . 4 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) | |
| 3 | 2 | biimpd 229 | . . 3 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) ∈ 𝐵 → (𝐹‘𝐴) ∈ 𝐵)) |
| 4 | 1, 3 | mpcom 38 | . 2 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹‘𝐴) ∈ 𝐵) |
| 5 | elnelne2 3047 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ ∅ ∉ 𝐵) → (𝐹‘𝐴) ≠ ∅) | |
| 6 | 5 | ancoms 458 | . . . . 5 ⊢ ((∅ ∉ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (𝐹‘𝐴) ≠ ∅) |
| 7 | fvfundmfvn0 6930 | . . . . 5 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 8 | df-dfat 47077 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 9 | afvfundmfveq 47096 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
| 10 | 8, 9 | sylbir 235 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹‘𝐴)) |
| 11 | eleq1 2821 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = (𝐹'''𝐴) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵)) | |
| 12 | 11 | eqcoms 2742 | . . . . . 6 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵)) |
| 13 | 12 | biimpd 229 | . . . . 5 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
| 14 | 6, 7, 10, 13 | 4syl 19 | . . . 4 ⊢ ((∅ ∉ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
| 15 | 14 | ex 412 | . . 3 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))) |
| 16 | 15 | pm2.43d 53 | . 2 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
| 17 | 4, 16 | impbid2 226 | 1 ⊢ (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∉ wnel 3035 ∅c0 4315 {csn 4608 dom cdm 5667 ↾ cres 5669 Fun wfun 6536 ‘cfv 6542 defAt wdfat 47074 '''cafv 47075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-res 5679 df-iota 6495 df-fun 6544 df-fv 6550 df-aiota 47043 df-dfat 47077 df-afv 47078 |
| This theorem is referenced by: aov0nbovbi 47153 |
| Copyright terms: Public domain | W3C validator |