| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv0nbfvbi | Structured version Visualization version GIF version | ||
| Description: The function's value at an argument is an element of a set if and only if the value of the alternative function at this argument is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| afv0nbfvbi | ⊢ (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afvvfveq 47178 | . . 3 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
| 2 | eleq1 2819 | . . . 4 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) | |
| 3 | 2 | biimpd 229 | . . 3 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) ∈ 𝐵 → (𝐹‘𝐴) ∈ 𝐵)) |
| 4 | 1, 3 | mpcom 38 | . 2 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹‘𝐴) ∈ 𝐵) |
| 5 | elnelne2 3044 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ ∅ ∉ 𝐵) → (𝐹‘𝐴) ≠ ∅) | |
| 6 | 5 | ancoms 458 | . . . . 5 ⊢ ((∅ ∉ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (𝐹‘𝐴) ≠ ∅) |
| 7 | fvfundmfvn0 6862 | . . . . 5 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 8 | df-dfat 47149 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
| 9 | afvfundmfveq 47168 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
| 10 | 8, 9 | sylbir 235 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹‘𝐴)) |
| 11 | eleq1 2819 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = (𝐹'''𝐴) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵)) | |
| 12 | 11 | eqcoms 2739 | . . . . . 6 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵)) |
| 13 | 12 | biimpd 229 | . . . . 5 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
| 14 | 6, 7, 10, 13 | 4syl 19 | . . . 4 ⊢ ((∅ ∉ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
| 15 | 14 | ex 412 | . . 3 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))) |
| 16 | 15 | pm2.43d 53 | . 2 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
| 17 | 4, 16 | impbid2 226 | 1 ⊢ (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 ∅c0 4283 {csn 4576 dom cdm 5616 ↾ cres 5618 Fun wfun 6475 ‘cfv 6481 defAt wdfat 47146 '''cafv 47147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-iota 6437 df-fun 6483 df-fv 6489 df-aiota 47115 df-dfat 47149 df-afv 47150 |
| This theorem is referenced by: aov0nbovbi 47225 |
| Copyright terms: Public domain | W3C validator |