Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv0nbfvbi Structured version   Visualization version   GIF version

Theorem afv0nbfvbi 47181
Description: The function's value at an argument is an element of a set if and only if the value of the alternative function at this argument is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afv0nbfvbi (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))

Proof of Theorem afv0nbfvbi
StepHypRef Expression
1 afvvfveq 47178 . . 3 ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹𝐴))
2 eleq1 2819 . . . 4 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
32biimpd 229 . . 3 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ 𝐵))
41, 3mpcom 38 . 2 ((𝐹'''𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ 𝐵)
5 elnelne2 3044 . . . . . 6 (((𝐹𝐴) ∈ 𝐵 ∧ ∅ ∉ 𝐵) → (𝐹𝐴) ≠ ∅)
65ancoms 458 . . . . 5 ((∅ ∉ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → (𝐹𝐴) ≠ ∅)
7 fvfundmfvn0 6862 . . . . 5 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
8 df-dfat 47149 . . . . . 6 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
9 afvfundmfveq 47168 . . . . . 6 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
108, 9sylbir 235 . . . . 5 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹𝐴))
11 eleq1 2819 . . . . . . 7 ((𝐹𝐴) = (𝐹'''𝐴) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵))
1211eqcoms 2739 . . . . . 6 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵))
1312biimpd 229 . . . . 5 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
146, 7, 10, 134syl 19 . . . 4 ((∅ ∉ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
1514ex 412 . . 3 (∅ ∉ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)))
1615pm2.43d 53 . 2 (∅ ∉ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
174, 16impbid2 226 1 (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wnel 3032  c0 4283  {csn 4576  dom cdm 5616  cres 5618  Fun wfun 6475  cfv 6481   defAt wdfat 47146  '''cafv 47147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-aiota 47115  df-dfat 47149  df-afv 47150
This theorem is referenced by:  aov0nbovbi  47225
  Copyright terms: Public domain W3C validator