Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv0nbfvbi Structured version   Visualization version   GIF version

Theorem afv0nbfvbi 47109
Description: The function's value at an argument is an element of a set if and only if the value of the alternative function at this argument is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afv0nbfvbi (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))

Proof of Theorem afv0nbfvbi
StepHypRef Expression
1 afvvfveq 47106 . . 3 ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹𝐴))
2 eleq1 2821 . . . 4 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
32biimpd 229 . . 3 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ 𝐵))
41, 3mpcom 38 . 2 ((𝐹'''𝐴) ∈ 𝐵 → (𝐹𝐴) ∈ 𝐵)
5 elnelne2 3047 . . . . . 6 (((𝐹𝐴) ∈ 𝐵 ∧ ∅ ∉ 𝐵) → (𝐹𝐴) ≠ ∅)
65ancoms 458 . . . . 5 ((∅ ∉ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → (𝐹𝐴) ≠ ∅)
7 fvfundmfvn0 6930 . . . . 5 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
8 df-dfat 47077 . . . . . 6 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
9 afvfundmfveq 47096 . . . . . 6 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
108, 9sylbir 235 . . . . 5 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹𝐴))
11 eleq1 2821 . . . . . . 7 ((𝐹𝐴) = (𝐹'''𝐴) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵))
1211eqcoms 2742 . . . . . 6 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵))
1312biimpd 229 . . . . 5 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
146, 7, 10, 134syl 19 . . . 4 ((∅ ∉ 𝐵 ∧ (𝐹𝐴) ∈ 𝐵) → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
1514ex 412 . . 3 (∅ ∉ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)))
1615pm2.43d 53 . 2 (∅ ∉ 𝐵 → ((𝐹𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))
174, 16impbid2 226 1 (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wnel 3035  c0 4315  {csn 4608  dom cdm 5667  cres 5669  Fun wfun 6536  cfv 6542   defAt wdfat 47074  '''cafv 47075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-res 5679  df-iota 6495  df-fun 6544  df-fv 6550  df-aiota 47043  df-dfat 47077  df-afv 47078
This theorem is referenced by:  aov0nbovbi  47153
  Copyright terms: Public domain W3C validator