![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv0nbfvbi | Structured version Visualization version GIF version |
Description: The function's value at an argument is an element of a set if and only if the value of the alternative function at this argument is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afv0nbfvbi | ⊢ (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afvvfveq 47063 | . . 3 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
2 | eleq1 2832 | . . . 4 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) | |
3 | 2 | biimpd 229 | . . 3 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) ∈ 𝐵 → (𝐹‘𝐴) ∈ 𝐵)) |
4 | 1, 3 | mpcom 38 | . 2 ⊢ ((𝐹'''𝐴) ∈ 𝐵 → (𝐹‘𝐴) ∈ 𝐵) |
5 | elnelne2 3064 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ 𝐵 ∧ ∅ ∉ 𝐵) → (𝐹‘𝐴) ≠ ∅) | |
6 | 5 | ancoms 458 | . . . . 5 ⊢ ((∅ ∉ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → (𝐹‘𝐴) ≠ ∅) |
7 | fvfundmfvn0 6963 | . . . . 5 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
8 | df-dfat 47034 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
9 | afvfundmfveq 47053 | . . . . . 6 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
10 | 8, 9 | sylbir 235 | . . . . 5 ⊢ ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) → (𝐹'''𝐴) = (𝐹‘𝐴)) |
11 | eleq1 2832 | . . . . . . 7 ⊢ ((𝐹‘𝐴) = (𝐹'''𝐴) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵)) | |
12 | 11 | eqcoms 2748 | . . . . . 6 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹'''𝐴) ∈ 𝐵)) |
13 | 12 | biimpd 229 | . . . . 5 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
14 | 6, 7, 10, 13 | 4syl 19 | . . . 4 ⊢ ((∅ ∉ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝐵) → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
15 | 14 | ex 412 | . . 3 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵))) |
16 | 15 | pm2.43d 53 | . 2 ⊢ (∅ ∉ 𝐵 → ((𝐹‘𝐴) ∈ 𝐵 → (𝐹'''𝐴) ∈ 𝐵)) |
17 | 4, 16 | impbid2 226 | 1 ⊢ (∅ ∉ 𝐵 → ((𝐹'''𝐴) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∅c0 4352 {csn 4648 dom cdm 5700 ↾ cres 5702 Fun wfun 6567 ‘cfv 6573 defAt wdfat 47031 '''cafv 47032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-aiota 47000 df-dfat 47034 df-afv 47035 |
This theorem is referenced by: aov0nbovbi 47110 |
Copyright terms: Public domain | W3C validator |