Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem2 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem2 28089
 Description: Lemma 2 for frgrncvvdeq 28098. In a friendship graph, for each neighbor of a vertex there is exactly one neighbor of another vertex so that there is an edge between these two neighbors. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem2 ((𝜑𝑥𝐷) → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑁(𝑥,𝑦)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem2
StepHypRef Expression
1 frgrncvvdeq.f . . . 4 (𝜑𝐺 ∈ FriendGraph )
21adantr 484 . . 3 ((𝜑𝑥𝐷) → 𝐺 ∈ FriendGraph )
3 frgrncvvdeq.nx . . . . . . 7 𝐷 = (𝐺 NeighbVtx 𝑋)
43eleq2i 2884 . . . . . 6 (𝑥𝐷𝑥 ∈ (𝐺 NeighbVtx 𝑋))
5 frgrncvvdeq.v1 . . . . . . . 8 𝑉 = (Vtx‘𝐺)
65nbgrisvtx 27135 . . . . . . 7 (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥𝑉)
76a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥𝑉))
84, 7syl5bi 245 . . . . 5 (𝜑 → (𝑥𝐷𝑥𝑉))
98imp 410 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝑉)
10 frgrncvvdeq.y . . . . 5 (𝜑𝑌𝑉)
1110adantr 484 . . . 4 ((𝜑𝑥𝐷) → 𝑌𝑉)
12 frgrncvvdeq.xy . . . . . 6 (𝜑𝑌𝐷)
13 elnelne2 3105 . . . . . . 7 ((𝑥𝐷𝑌𝐷) → 𝑥𝑌)
1413expcom 417 . . . . . 6 (𝑌𝐷 → (𝑥𝐷𝑥𝑌))
1512, 14syl 17 . . . . 5 (𝜑 → (𝑥𝐷𝑥𝑌))
1615imp 410 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝑌)
179, 11, 163jca 1125 . . 3 ((𝜑𝑥𝐷) → (𝑥𝑉𝑌𝑉𝑥𝑌))
18 frgrncvvdeq.e . . . 4 𝐸 = (Edg‘𝐺)
195, 18frcond1 28055 . . 3 (𝐺 ∈ FriendGraph → ((𝑥𝑉𝑌𝑉𝑥𝑌) → ∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸))
202, 17, 19sylc 65 . 2 ((𝜑𝑥𝐷) → ∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸)
21 frgrusgr 28050 . . . 4 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
22 usgrumgr 26976 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
235, 18umgrpredgv 26937 . . . . . . . . . . . . . 14 ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝑥𝑉𝑦𝑉))
2423simprd 499 . . . . . . . . . . . . 13 ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑦} ∈ 𝐸) → 𝑦𝑉)
2524ex 416 . . . . . . . . . . . 12 (𝐺 ∈ UMGraph → ({𝑥, 𝑦} ∈ 𝐸𝑦𝑉))
2622, 25syl 17 . . . . . . . . . . 11 (𝐺 ∈ USGraph → ({𝑥, 𝑦} ∈ 𝐸𝑦𝑉))
2726adantld 494 . . . . . . . . . 10 (𝐺 ∈ USGraph → (({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) → 𝑦𝑉))
2827pm4.71rd 566 . . . . . . . . 9 (𝐺 ∈ USGraph → (({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ (𝑦𝑉 ∧ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))))
29 prex 5301 . . . . . . . . . . . 12 {𝑥, 𝑦} ∈ V
30 prex 5301 . . . . . . . . . . . 12 {𝑦, 𝑌} ∈ V
3129, 30prss 4716 . . . . . . . . . . 11 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑌} ∈ 𝐸) ↔ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸)
32 ancom 464 . . . . . . . . . . 11 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑌} ∈ 𝐸) ↔ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
3331, 32bitr3i 280 . . . . . . . . . 10 ({{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 ↔ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
3433anbi2i 625 . . . . . . . . 9 ((𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ (𝑦𝑉 ∧ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))
3528, 34syl6rbbr 293 . . . . . . . 8 (𝐺 ∈ USGraph → ((𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))
36 frgrncvvdeq.ny . . . . . . . . . . 11 𝑁 = (𝐺 NeighbVtx 𝑌)
3736eleq2i 2884 . . . . . . . . . 10 (𝑦𝑁𝑦 ∈ (𝐺 NeighbVtx 𝑌))
3818nbusgreledg 27147 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑦, 𝑌} ∈ 𝐸))
3937, 38syl5rbb 287 . . . . . . . . 9 (𝐺 ∈ USGraph → ({𝑦, 𝑌} ∈ 𝐸𝑦𝑁))
4039anbi1d 632 . . . . . . . 8 (𝐺 ∈ USGraph → (({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ (𝑦𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸)))
4135, 40bitrd 282 . . . . . . 7 (𝐺 ∈ USGraph → ((𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ (𝑦𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸)))
4241eubidv 2650 . . . . . 6 (𝐺 ∈ USGraph → (∃!𝑦(𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ ∃!𝑦(𝑦𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸)))
4342biimpd 232 . . . . 5 (𝐺 ∈ USGraph → (∃!𝑦(𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) → ∃!𝑦(𝑦𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸)))
44 df-reu 3116 . . . . 5 (∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 ↔ ∃!𝑦(𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸))
45 df-reu 3116 . . . . 5 (∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸 ↔ ∃!𝑦(𝑦𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸))
4643, 44, 453imtr4g 299 . . . 4 (𝐺 ∈ USGraph → (∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
471, 21, 463syl 18 . . 3 (𝜑 → (∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
4847adantr 484 . 2 ((𝜑𝑥𝐷) → (∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
4920, 48mpd 15 1 ((𝜑𝑥𝐷) → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∃!weu 2631   ≠ wne 2990   ∉ wnel 3094  ∃!wreu 3111   ⊆ wss 3884  {cpr 4530   ↦ cmpt 5113  ‘cfv 6328  ℩crio 7096  (class class class)co 7139  Vtxcvtx 26793  Edgcedg 26844  UMGraphcumgr 26878  USGraphcusgr 26946   NeighbVtx cnbgr 27126   FriendGraph cfrgr 28047 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12890  df-hash 13691  df-edg 26845  df-upgr 26879  df-umgr 26880  df-usgr 26948  df-nbgr 27127  df-frgr 28048 This theorem is referenced by:  frgrncvvdeqlem3  28090  frgrncvvdeqlem4  28091
 Copyright terms: Public domain W3C validator