Proof of Theorem frgrncvvdeqlem2
Step | Hyp | Ref
| Expression |
1 | | frgrncvvdeq.f |
. . . 4
⊢ (𝜑 → 𝐺 ∈ FriendGraph ) |
2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝐺 ∈ FriendGraph ) |
3 | | frgrncvvdeq.nx |
. . . . . . 7
⊢ 𝐷 = (𝐺 NeighbVtx 𝑋) |
4 | 3 | eleq2i 2830 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 ↔ 𝑥 ∈ (𝐺 NeighbVtx 𝑋)) |
5 | | frgrncvvdeq.v1 |
. . . . . . . 8
⊢ 𝑉 = (Vtx‘𝐺) |
6 | 5 | nbgrisvtx 27611 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥 ∈ 𝑉) |
7 | 6 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥 ∈ 𝑉)) |
8 | 4, 7 | syl5bi 241 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐷 → 𝑥 ∈ 𝑉)) |
9 | 8 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ 𝑉) |
10 | | frgrncvvdeq.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
11 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑌 ∈ 𝑉) |
12 | | frgrncvvdeq.xy |
. . . . . 6
⊢ (𝜑 → 𝑌 ∉ 𝐷) |
13 | | elnelne2 3059 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑌 ∉ 𝐷) → 𝑥 ≠ 𝑌) |
14 | 13 | expcom 413 |
. . . . . 6
⊢ (𝑌 ∉ 𝐷 → (𝑥 ∈ 𝐷 → 𝑥 ≠ 𝑌)) |
15 | 12, 14 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐷 → 𝑥 ≠ 𝑌)) |
16 | 15 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ≠ 𝑌) |
17 | 9, 11, 16 | 3jca 1126 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ≠ 𝑌)) |
18 | | frgrncvvdeq.e |
. . . 4
⊢ 𝐸 = (Edg‘𝐺) |
19 | 5, 18 | frcond1 28531 |
. . 3
⊢ (𝐺 ∈ FriendGraph →
((𝑥 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑥 ≠ 𝑌) → ∃!𝑦 ∈ 𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸)) |
20 | 2, 17, 19 | sylc 65 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃!𝑦 ∈ 𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) |
21 | | frgrusgr 28526 |
. . . 4
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈
USGraph) |
22 | | prex 5350 |
. . . . . . . . . . . 12
⊢ {𝑥, 𝑦} ∈ V |
23 | | prex 5350 |
. . . . . . . . . . . 12
⊢ {𝑦, 𝑌} ∈ V |
24 | 22, 23 | prss 4750 |
. . . . . . . . . . 11
⊢ (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑌} ∈ 𝐸) ↔ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) |
25 | | ancom 460 |
. . . . . . . . . . 11
⊢ (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑌} ∈ 𝐸) ↔ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)) |
26 | 24, 25 | bitr3i 276 |
. . . . . . . . . 10
⊢ ({{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 ↔ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)) |
27 | 26 | anbi2i 622 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ (𝑦 ∈ 𝑉 ∧ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))) |
28 | | usgrumgr 27452 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UMGraph) |
29 | 5, 18 | umgrpredgv 27413 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
30 | 29 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑦} ∈ 𝐸) → 𝑦 ∈ 𝑉) |
31 | 30 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ UMGraph → ({𝑥, 𝑦} ∈ 𝐸 → 𝑦 ∈ 𝑉)) |
32 | 28, 31 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USGraph → ({𝑥, 𝑦} ∈ 𝐸 → 𝑦 ∈ 𝑉)) |
33 | 32 | adantld 490 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph → (({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) → 𝑦 ∈ 𝑉)) |
34 | 33 | pm4.71rd 562 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ (𝑦 ∈ 𝑉 ∧ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))) |
35 | 27, 34 | bitr4id 289 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → ((𝑦 ∈ 𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))) |
36 | | frgrncvvdeq.ny |
. . . . . . . . . . 11
⊢ 𝑁 = (𝐺 NeighbVtx 𝑌) |
37 | 36 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝑁 ↔ 𝑦 ∈ (𝐺 NeighbVtx 𝑌)) |
38 | 18 | nbusgreledg 27623 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑦, 𝑌} ∈ 𝐸)) |
39 | 37, 38 | bitr2id 283 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → ({𝑦, 𝑌} ∈ 𝐸 ↔ 𝑦 ∈ 𝑁)) |
40 | 39 | anbi1d 629 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → (({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ (𝑦 ∈ 𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸))) |
41 | 35, 40 | bitrd 278 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → ((𝑦 ∈ 𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ (𝑦 ∈ 𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸))) |
42 | 41 | eubidv 2586 |
. . . . . 6
⊢ (𝐺 ∈ USGraph →
(∃!𝑦(𝑦 ∈ 𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ ∃!𝑦(𝑦 ∈ 𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸))) |
43 | 42 | biimpd 228 |
. . . . 5
⊢ (𝐺 ∈ USGraph →
(∃!𝑦(𝑦 ∈ 𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) → ∃!𝑦(𝑦 ∈ 𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸))) |
44 | | df-reu 3070 |
. . . . 5
⊢
(∃!𝑦 ∈
𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 ↔ ∃!𝑦(𝑦 ∈ 𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸)) |
45 | | df-reu 3070 |
. . . . 5
⊢
(∃!𝑦 ∈
𝑁 {𝑥, 𝑦} ∈ 𝐸 ↔ ∃!𝑦(𝑦 ∈ 𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸)) |
46 | 43, 44, 45 | 3imtr4g 295 |
. . . 4
⊢ (𝐺 ∈ USGraph →
(∃!𝑦 ∈ 𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 → ∃!𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
47 | 1, 21, 46 | 3syl 18 |
. . 3
⊢ (𝜑 → (∃!𝑦 ∈ 𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 → ∃!𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
48 | 47 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∃!𝑦 ∈ 𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 → ∃!𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸)) |
49 | 20, 48 | mpd 15 |
1
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∃!𝑦 ∈ 𝑁 {𝑥, 𝑦} ∈ 𝐸) |