MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrncvvdeqlem2 Structured version   Visualization version   GIF version

Theorem frgrncvvdeqlem2 30332
Description: Lemma 2 for frgrncvvdeq 30341. In a friendship graph, for each neighbor of a vertex there is exactly one neighbor of another vertex so that there is an edge between these two neighbors. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 10-May-2021.) (Proof shortened by AV, 12-Feb-2022.)
Hypotheses
Ref Expression
frgrncvvdeq.v1 𝑉 = (Vtx‘𝐺)
frgrncvvdeq.e 𝐸 = (Edg‘𝐺)
frgrncvvdeq.nx 𝐷 = (𝐺 NeighbVtx 𝑋)
frgrncvvdeq.ny 𝑁 = (𝐺 NeighbVtx 𝑌)
frgrncvvdeq.x (𝜑𝑋𝑉)
frgrncvvdeq.y (𝜑𝑌𝑉)
frgrncvvdeq.ne (𝜑𝑋𝑌)
frgrncvvdeq.xy (𝜑𝑌𝐷)
frgrncvvdeq.f (𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
Assertion
Ref Expression
frgrncvvdeqlem2 ((𝜑𝑥𝐷) → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑉   𝑦,𝑌   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥)   𝐺(𝑥)   𝑁(𝑥,𝑦)   𝑉(𝑥)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrncvvdeqlem2
StepHypRef Expression
1 frgrncvvdeq.f . . . 4 (𝜑𝐺 ∈ FriendGraph )
21adantr 480 . . 3 ((𝜑𝑥𝐷) → 𝐺 ∈ FriendGraph )
3 frgrncvvdeq.nx . . . . . . 7 𝐷 = (𝐺 NeighbVtx 𝑋)
43eleq2i 2836 . . . . . 6 (𝑥𝐷𝑥 ∈ (𝐺 NeighbVtx 𝑋))
5 frgrncvvdeq.v1 . . . . . . . 8 𝑉 = (Vtx‘𝐺)
65nbgrisvtx 29376 . . . . . . 7 (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥𝑉)
76a1i 11 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐺 NeighbVtx 𝑋) → 𝑥𝑉))
84, 7biimtrid 242 . . . . 5 (𝜑 → (𝑥𝐷𝑥𝑉))
98imp 406 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝑉)
10 frgrncvvdeq.y . . . . 5 (𝜑𝑌𝑉)
1110adantr 480 . . . 4 ((𝜑𝑥𝐷) → 𝑌𝑉)
12 frgrncvvdeq.xy . . . . . 6 (𝜑𝑌𝐷)
13 elnelne2 3064 . . . . . . 7 ((𝑥𝐷𝑌𝐷) → 𝑥𝑌)
1413expcom 413 . . . . . 6 (𝑌𝐷 → (𝑥𝐷𝑥𝑌))
1512, 14syl 17 . . . . 5 (𝜑 → (𝑥𝐷𝑥𝑌))
1615imp 406 . . . 4 ((𝜑𝑥𝐷) → 𝑥𝑌)
179, 11, 163jca 1128 . . 3 ((𝜑𝑥𝐷) → (𝑥𝑉𝑌𝑉𝑥𝑌))
18 frgrncvvdeq.e . . . 4 𝐸 = (Edg‘𝐺)
195, 18frcond1 30298 . . 3 (𝐺 ∈ FriendGraph → ((𝑥𝑉𝑌𝑉𝑥𝑌) → ∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸))
202, 17, 19sylc 65 . 2 ((𝜑𝑥𝐷) → ∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸)
21 frgrusgr 30293 . . . 4 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
22 prex 5452 . . . . . . . . . . . 12 {𝑥, 𝑦} ∈ V
23 prex 5452 . . . . . . . . . . . 12 {𝑦, 𝑌} ∈ V
2422, 23prss 4845 . . . . . . . . . . 11 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑌} ∈ 𝐸) ↔ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸)
25 ancom 460 . . . . . . . . . . 11 (({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝑌} ∈ 𝐸) ↔ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
2624, 25bitr3i 277 . . . . . . . . . 10 ({{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 ↔ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))
2726anbi2i 622 . . . . . . . . 9 ((𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ (𝑦𝑉 ∧ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))
28 usgrumgr 29216 . . . . . . . . . . . 12 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
295, 18umgrpredgv 29175 . . . . . . . . . . . . . 14 ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑦} ∈ 𝐸) → (𝑥𝑉𝑦𝑉))
3029simprd 495 . . . . . . . . . . . . 13 ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑦} ∈ 𝐸) → 𝑦𝑉)
3130ex 412 . . . . . . . . . . . 12 (𝐺 ∈ UMGraph → ({𝑥, 𝑦} ∈ 𝐸𝑦𝑉))
3228, 31syl 17 . . . . . . . . . . 11 (𝐺 ∈ USGraph → ({𝑥, 𝑦} ∈ 𝐸𝑦𝑉))
3332adantld 490 . . . . . . . . . 10 (𝐺 ∈ USGraph → (({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) → 𝑦𝑉))
3433pm4.71rd 562 . . . . . . . . 9 (𝐺 ∈ USGraph → (({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ (𝑦𝑉 ∧ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸))))
3527, 34bitr4id 290 . . . . . . . 8 (𝐺 ∈ USGraph → ((𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ ({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸)))
36 frgrncvvdeq.ny . . . . . . . . . . 11 𝑁 = (𝐺 NeighbVtx 𝑌)
3736eleq2i 2836 . . . . . . . . . 10 (𝑦𝑁𝑦 ∈ (𝐺 NeighbVtx 𝑌))
3818nbusgreledg 29388 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑌) ↔ {𝑦, 𝑌} ∈ 𝐸))
3937, 38bitr2id 284 . . . . . . . . 9 (𝐺 ∈ USGraph → ({𝑦, 𝑌} ∈ 𝐸𝑦𝑁))
4039anbi1d 630 . . . . . . . 8 (𝐺 ∈ USGraph → (({𝑦, 𝑌} ∈ 𝐸 ∧ {𝑥, 𝑦} ∈ 𝐸) ↔ (𝑦𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸)))
4135, 40bitrd 279 . . . . . . 7 (𝐺 ∈ USGraph → ((𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ (𝑦𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸)))
4241eubidv 2589 . . . . . 6 (𝐺 ∈ USGraph → (∃!𝑦(𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) ↔ ∃!𝑦(𝑦𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸)))
4342biimpd 229 . . . . 5 (𝐺 ∈ USGraph → (∃!𝑦(𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸) → ∃!𝑦(𝑦𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸)))
44 df-reu 3389 . . . . 5 (∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 ↔ ∃!𝑦(𝑦𝑉 ∧ {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸))
45 df-reu 3389 . . . . 5 (∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸 ↔ ∃!𝑦(𝑦𝑁 ∧ {𝑥, 𝑦} ∈ 𝐸))
4643, 44, 453imtr4g 296 . . . 4 (𝐺 ∈ USGraph → (∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
471, 21, 463syl 18 . . 3 (𝜑 → (∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
4847adantr 480 . 2 ((𝜑𝑥𝐷) → (∃!𝑦𝑉 {{𝑥, 𝑦}, {𝑦, 𝑌}} ⊆ 𝐸 → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸))
4920, 48mpd 15 1 ((𝜑𝑥𝐷) → ∃!𝑦𝑁 {𝑥, 𝑦} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  ∃!weu 2571  wne 2946  wnel 3052  ∃!wreu 3386  wss 3976  {cpr 4650  cmpt 5249  cfv 6573  crio 7403  (class class class)co 7448  Vtxcvtx 29031  Edgcedg 29082  UMGraphcumgr 29116  USGraphcusgr 29184   NeighbVtx cnbgr 29367   FriendGraph cfrgr 30290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-edg 29083  df-upgr 29117  df-umgr 29118  df-usgr 29186  df-nbgr 29368  df-frgr 30291
This theorem is referenced by:  frgrncvvdeqlem3  30333  frgrncvvdeqlem4  30334
  Copyright terms: Public domain W3C validator