Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemfv1 Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemfv1 47328
Description: Lemma for imasetpreimafvbij 47331: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemfv1 ((𝐹 Fn 𝐴𝑋𝑃) → ∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝑋,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃   𝑦,𝐴   𝑦,𝐹   𝑦,𝑃   𝑥,𝑋,𝑦   𝑧,𝑋   𝑦,𝑝
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑦,𝑧,𝑝)

Proof of Theorem imasetpreimafvbijlemfv1
StepHypRef Expression
1 fundcmpsurinj.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
210nelsetpreimafv 47315 . . . 4 (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
3 elnelne2 3056 . . . . 5 ((𝑋𝑃 ∧ ∅ ∉ 𝑃) → 𝑋 ≠ ∅)
43expcom 413 . . . 4 (∅ ∉ 𝑃 → (𝑋𝑃𝑋 ≠ ∅))
52, 4syl 17 . . 3 (𝐹 Fn 𝐴 → (𝑋𝑃𝑋 ≠ ∅))
65imp 406 . 2 ((𝐹 Fn 𝐴𝑋𝑃) → 𝑋 ≠ ∅)
7 simpr 484 . . . . . 6 (((𝐹 Fn 𝐴𝑋𝑃) ∧ 𝑦𝑋) → 𝑦𝑋)
8 fundcmpsurinj.h . . . . . . . 8 𝐻 = (𝑝𝑃 (𝐹𝑝))
91, 8imasetpreimafvbijlemfv 47327 . . . . . . 7 ((𝐹 Fn 𝐴𝑋𝑃𝑦𝑋) → (𝐻𝑋) = (𝐹𝑦))
1093expa 1117 . . . . . 6 (((𝐹 Fn 𝐴𝑋𝑃) ∧ 𝑦𝑋) → (𝐻𝑋) = (𝐹𝑦))
117, 10jca 511 . . . . 5 (((𝐹 Fn 𝐴𝑋𝑃) ∧ 𝑦𝑋) → (𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦)))
1211ex 412 . . . 4 ((𝐹 Fn 𝐴𝑋𝑃) → (𝑦𝑋 → (𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦))))
1312eximdv 1915 . . 3 ((𝐹 Fn 𝐴𝑋𝑃) → (∃𝑦 𝑦𝑋 → ∃𝑦(𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦))))
14 n0 4359 . . 3 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
15 df-rex 3069 . . 3 (∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦) ↔ ∃𝑦(𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦)))
1613, 14, 153imtr4g 296 . 2 ((𝐹 Fn 𝐴𝑋𝑃) → (𝑋 ≠ ∅ → ∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦)))
176, 16mpd 15 1 ((𝐹 Fn 𝐴𝑋𝑃) → ∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  wnel 3044  wrex 3068  c0 4339  {csn 4631   cuni 4912  cmpt 5231  ccnv 5688  cima 5692   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by:  imasetpreimafvbijlemf1  47329
  Copyright terms: Public domain W3C validator