Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemfv1 Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemfv1 47408
Description: Lemma for imasetpreimafvbij 47411: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemfv1 ((𝐹 Fn 𝐴𝑋𝑃) → ∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝑋,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃   𝑦,𝐴   𝑦,𝐹   𝑦,𝑃   𝑥,𝑋,𝑦   𝑧,𝑋   𝑦,𝑝
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑦,𝑧,𝑝)

Proof of Theorem imasetpreimafvbijlemfv1
StepHypRef Expression
1 fundcmpsurinj.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
210nelsetpreimafv 47395 . . . 4 (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
3 elnelne2 3042 . . . . 5 ((𝑋𝑃 ∧ ∅ ∉ 𝑃) → 𝑋 ≠ ∅)
43expcom 413 . . . 4 (∅ ∉ 𝑃 → (𝑋𝑃𝑋 ≠ ∅))
52, 4syl 17 . . 3 (𝐹 Fn 𝐴 → (𝑋𝑃𝑋 ≠ ∅))
65imp 406 . 2 ((𝐹 Fn 𝐴𝑋𝑃) → 𝑋 ≠ ∅)
7 simpr 484 . . . . . 6 (((𝐹 Fn 𝐴𝑋𝑃) ∧ 𝑦𝑋) → 𝑦𝑋)
8 fundcmpsurinj.h . . . . . . . 8 𝐻 = (𝑝𝑃 (𝐹𝑝))
91, 8imasetpreimafvbijlemfv 47407 . . . . . . 7 ((𝐹 Fn 𝐴𝑋𝑃𝑦𝑋) → (𝐻𝑋) = (𝐹𝑦))
1093expa 1118 . . . . . 6 (((𝐹 Fn 𝐴𝑋𝑃) ∧ 𝑦𝑋) → (𝐻𝑋) = (𝐹𝑦))
117, 10jca 511 . . . . 5 (((𝐹 Fn 𝐴𝑋𝑃) ∧ 𝑦𝑋) → (𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦)))
1211ex 412 . . . 4 ((𝐹 Fn 𝐴𝑋𝑃) → (𝑦𝑋 → (𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦))))
1312eximdv 1917 . . 3 ((𝐹 Fn 𝐴𝑋𝑃) → (∃𝑦 𝑦𝑋 → ∃𝑦(𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦))))
14 n0 4319 . . 3 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
15 df-rex 3055 . . 3 (∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦) ↔ ∃𝑦(𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦)))
1613, 14, 153imtr4g 296 . 2 ((𝐹 Fn 𝐴𝑋𝑃) → (𝑋 ≠ ∅ → ∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦)))
176, 16mpd 15 1 ((𝐹 Fn 𝐴𝑋𝑃) → ∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wnel 3030  wrex 3054  c0 4299  {csn 4592   cuni 4874  cmpt 5191  ccnv 5640  cima 5644   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  imasetpreimafvbijlemf1  47409
  Copyright terms: Public domain W3C validator