![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbijlemfv1 | Structured version Visualization version GIF version |
Description: Lemma for imasetpreimafvbij 46809: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
Ref | Expression |
---|---|
imasetpreimafvbijlemfv1 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | 0nelsetpreimafv 46793 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
3 | elnelne2 3048 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → 𝑋 ≠ ∅) | |
4 | 3 | expcom 412 | . . . 4 ⊢ (∅ ∉ 𝑃 → (𝑋 ∈ 𝑃 → 𝑋 ≠ ∅)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ 𝑃 → 𝑋 ≠ ∅)) |
6 | 5 | imp 405 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → 𝑋 ≠ ∅) |
7 | simpr 483 | . . . . . 6 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) | |
8 | fundcmpsurinj.h | . . . . . . . 8 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
9 | 1, 8 | imasetpreimafvbijlemfv 46805 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃 ∧ 𝑦 ∈ 𝑋) → (𝐻‘𝑋) = (𝐹‘𝑦)) |
10 | 9 | 3expa 1115 | . . . . . 6 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) ∧ 𝑦 ∈ 𝑋) → (𝐻‘𝑋) = (𝐹‘𝑦)) |
11 | 7, 10 | jca 510 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) ∧ 𝑦 ∈ 𝑋) → (𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦))) |
12 | 11 | ex 411 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → (𝑦 ∈ 𝑋 → (𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦)))) |
13 | 12 | eximdv 1912 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦(𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦)))) |
14 | n0 4347 | . . 3 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
15 | df-rex 3061 | . . 3 ⊢ (∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦))) | |
16 | 13, 14, 15 | 3imtr4g 295 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → (𝑋 ≠ ∅ → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦))) |
17 | 6, 16 | mpd 15 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2702 ≠ wne 2930 ∉ wnel 3036 ∃wrex 3060 ∅c0 4323 {csn 4629 ∪ cuni 4908 ↦ cmpt 5231 ◡ccnv 5676 “ cima 5680 Fn wfn 6542 ‘cfv 6547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-fv 6555 |
This theorem is referenced by: imasetpreimafvbijlemf1 46807 |
Copyright terms: Public domain | W3C validator |