Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemfv1 Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemfv1 46061
Description: Lemma for imasetpreimafvbij 46064: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemfv1 ((𝐹 Fn 𝐴𝑋𝑃) → ∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝑋,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃   𝑦,𝐴   𝑦,𝐹   𝑦,𝑃   𝑥,𝑋,𝑦   𝑧,𝑋   𝑦,𝑝
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑦,𝑧,𝑝)

Proof of Theorem imasetpreimafvbijlemfv1
StepHypRef Expression
1 fundcmpsurinj.p . . . . 5 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
210nelsetpreimafv 46048 . . . 4 (𝐹 Fn 𝐴 → ∅ ∉ 𝑃)
3 elnelne2 3058 . . . . 5 ((𝑋𝑃 ∧ ∅ ∉ 𝑃) → 𝑋 ≠ ∅)
43expcom 414 . . . 4 (∅ ∉ 𝑃 → (𝑋𝑃𝑋 ≠ ∅))
52, 4syl 17 . . 3 (𝐹 Fn 𝐴 → (𝑋𝑃𝑋 ≠ ∅))
65imp 407 . 2 ((𝐹 Fn 𝐴𝑋𝑃) → 𝑋 ≠ ∅)
7 simpr 485 . . . . . 6 (((𝐹 Fn 𝐴𝑋𝑃) ∧ 𝑦𝑋) → 𝑦𝑋)
8 fundcmpsurinj.h . . . . . . . 8 𝐻 = (𝑝𝑃 (𝐹𝑝))
91, 8imasetpreimafvbijlemfv 46060 . . . . . . 7 ((𝐹 Fn 𝐴𝑋𝑃𝑦𝑋) → (𝐻𝑋) = (𝐹𝑦))
1093expa 1118 . . . . . 6 (((𝐹 Fn 𝐴𝑋𝑃) ∧ 𝑦𝑋) → (𝐻𝑋) = (𝐹𝑦))
117, 10jca 512 . . . . 5 (((𝐹 Fn 𝐴𝑋𝑃) ∧ 𝑦𝑋) → (𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦)))
1211ex 413 . . . 4 ((𝐹 Fn 𝐴𝑋𝑃) → (𝑦𝑋 → (𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦))))
1312eximdv 1920 . . 3 ((𝐹 Fn 𝐴𝑋𝑃) → (∃𝑦 𝑦𝑋 → ∃𝑦(𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦))))
14 n0 4346 . . 3 (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦𝑋)
15 df-rex 3071 . . 3 (∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦) ↔ ∃𝑦(𝑦𝑋 ∧ (𝐻𝑋) = (𝐹𝑦)))
1613, 14, 153imtr4g 295 . 2 ((𝐹 Fn 𝐴𝑋𝑃) → (𝑋 ≠ ∅ → ∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦)))
176, 16mpd 15 1 ((𝐹 Fn 𝐴𝑋𝑃) → ∃𝑦𝑋 (𝐻𝑋) = (𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wne 2940  wnel 3046  wrex 3070  c0 4322  {csn 4628   cuni 4908  cmpt 5231  ccnv 5675  cima 5679   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  imasetpreimafvbijlemf1  46062
  Copyright terms: Public domain W3C validator