| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbijlemfv1 | Structured version Visualization version GIF version | ||
| Description: Lemma for imasetpreimafvbij 47380: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.) |
| Ref | Expression |
|---|---|
| fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
| Ref | Expression |
|---|---|
| imasetpreimafvbijlemfv1 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fundcmpsurinj.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | 1 | 0nelsetpreimafv 47364 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
| 3 | elnelne2 3041 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → 𝑋 ≠ ∅) | |
| 4 | 3 | expcom 413 | . . . 4 ⊢ (∅ ∉ 𝑃 → (𝑋 ∈ 𝑃 → 𝑋 ≠ ∅)) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ 𝑃 → 𝑋 ≠ ∅)) |
| 6 | 5 | imp 406 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → 𝑋 ≠ ∅) |
| 7 | simpr 484 | . . . . . 6 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) | |
| 8 | fundcmpsurinj.h | . . . . . . . 8 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
| 9 | 1, 8 | imasetpreimafvbijlemfv 47376 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃 ∧ 𝑦 ∈ 𝑋) → (𝐻‘𝑋) = (𝐹‘𝑦)) |
| 10 | 9 | 3expa 1118 | . . . . . 6 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) ∧ 𝑦 ∈ 𝑋) → (𝐻‘𝑋) = (𝐹‘𝑦)) |
| 11 | 7, 10 | jca 511 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) ∧ 𝑦 ∈ 𝑋) → (𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦))) |
| 12 | 11 | ex 412 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → (𝑦 ∈ 𝑋 → (𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦)))) |
| 13 | 12 | eximdv 1917 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦(𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦)))) |
| 14 | n0 4312 | . . 3 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
| 15 | df-rex 3054 | . . 3 ⊢ (∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦))) | |
| 16 | 13, 14, 15 | 3imtr4g 296 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → (𝑋 ≠ ∅ → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦))) |
| 17 | 6, 16 | mpd 15 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∉ wnel 3029 ∃wrex 3053 ∅c0 4292 {csn 4585 ∪ cuni 4867 ↦ cmpt 5183 ◡ccnv 5630 “ cima 5634 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: imasetpreimafvbijlemf1 47378 |
| Copyright terms: Public domain | W3C validator |