![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbijlemfv1 | Structured version Visualization version GIF version |
Description: Lemma for imasetpreimafvbij 46064: for a preimage of a value of function 𝐹 there is an element of the preimage so that the value of the mapping 𝐻 at this preimage is the function value at this element. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
Ref | Expression |
---|---|
imasetpreimafvbijlemfv1 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.p | . . . . 5 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | 0nelsetpreimafv 46048 | . . . 4 ⊢ (𝐹 Fn 𝐴 → ∅ ∉ 𝑃) |
3 | elnelne2 3058 | . . . . 5 ⊢ ((𝑋 ∈ 𝑃 ∧ ∅ ∉ 𝑃) → 𝑋 ≠ ∅) | |
4 | 3 | expcom 414 | . . . 4 ⊢ (∅ ∉ 𝑃 → (𝑋 ∈ 𝑃 → 𝑋 ≠ ∅)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝑋 ∈ 𝑃 → 𝑋 ≠ ∅)) |
6 | 5 | imp 407 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → 𝑋 ≠ ∅) |
7 | simpr 485 | . . . . . 6 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) | |
8 | fundcmpsurinj.h | . . . . . . . 8 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
9 | 1, 8 | imasetpreimafvbijlemfv 46060 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃 ∧ 𝑦 ∈ 𝑋) → (𝐻‘𝑋) = (𝐹‘𝑦)) |
10 | 9 | 3expa 1118 | . . . . . 6 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) ∧ 𝑦 ∈ 𝑋) → (𝐻‘𝑋) = (𝐹‘𝑦)) |
11 | 7, 10 | jca 512 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) ∧ 𝑦 ∈ 𝑋) → (𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦))) |
12 | 11 | ex 413 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → (𝑦 ∈ 𝑋 → (𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦)))) |
13 | 12 | eximdv 1920 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → (∃𝑦 𝑦 ∈ 𝑋 → ∃𝑦(𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦)))) |
14 | n0 4346 | . . 3 ⊢ (𝑋 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝑋) | |
15 | df-rex 3071 | . . 3 ⊢ (∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ (𝐻‘𝑋) = (𝐹‘𝑦))) | |
16 | 13, 14, 15 | 3imtr4g 295 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → (𝑋 ≠ ∅ → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦))) |
17 | 6, 16 | mpd 15 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝑃) → ∃𝑦 ∈ 𝑋 (𝐻‘𝑋) = (𝐹‘𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ≠ wne 2940 ∉ wnel 3046 ∃wrex 3070 ∅c0 4322 {csn 4628 ∪ cuni 4908 ↦ cmpt 5231 ◡ccnv 5675 “ cima 5679 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: imasetpreimafvbijlemf1 46062 |
Copyright terms: Public domain | W3C validator |