MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elop Structured version   Visualization version   GIF version

Theorem elop 5382
Description: Characterization of the elements of an ordered pair. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
elop.1 𝐵 ∈ V
elop.2 𝐶 ∈ V
Assertion
Ref Expression
elop (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))

Proof of Theorem elop
StepHypRef Expression
1 elop.1 . 2 𝐵 ∈ V
2 elop.2 . 2 𝐶 ∈ V
3 elopg 5381 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})))
41, 2, 3mp2an 689 1 (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  {cpr 4563  cop 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568
This theorem is referenced by:  relop  5759
  Copyright terms: Public domain W3C validator