| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elop | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of an ordered pair. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| elop.1 | ⊢ 𝐵 ∈ V |
| elop.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elop | ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elop.1 | . 2 ⊢ 𝐵 ∈ V | |
| 2 | elop.2 | . 2 ⊢ 𝐶 ∈ V | |
| 3 | elopg 5451 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1539 ∈ wcel 2107 Vcvv 3463 {csn 4606 {cpr 4608 〈cop 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 |
| This theorem is referenced by: relop 5841 |
| Copyright terms: Public domain | W3C validator |