Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elop Structured version   Visualization version   GIF version

Theorem elop 5352
 Description: Characterization of the elements of an ordered pair. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
elop.1 𝐵 ∈ V
elop.2 𝐶 ∈ V
Assertion
Ref Expression
elop (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))

Proof of Theorem elop
StepHypRef Expression
1 elop.1 . 2 𝐵 ∈ V
2 elop.2 . 2 𝐶 ∈ V
3 elopg 5351 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})))
41, 2, 3mp2an 690 1 (𝐴 ∈ ⟨𝐵, 𝐶⟩ ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∨ wo 843   = wceq 1533   ∈ wcel 2110  Vcvv 3495  {csn 4561  {cpr 4563  ⟨cop 4567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pr 5322 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568 This theorem is referenced by:  relop  5716
 Copyright terms: Public domain W3C validator