![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elop | Structured version Visualization version GIF version |
Description: Characterization of the elements of an ordered pair. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
elop.1 | ⊢ 𝐵 ∈ V |
elop.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elop | ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elop.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elop.2 | . 2 ⊢ 𝐶 ∈ V | |
3 | elopg 5125 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶}))) | |
4 | 1, 2, 3 | mp2an 684 | 1 ⊢ (𝐴 ∈ 〈𝐵, 𝐶〉 ↔ (𝐴 = {𝐵} ∨ 𝐴 = {𝐵, 𝐶})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∨ wo 874 = wceq 1653 ∈ wcel 2157 Vcvv 3385 {csn 4368 {cpr 4370 〈cop 4374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 |
This theorem is referenced by: relop 5476 |
Copyright terms: Public domain | W3C validator |