MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opi1 Structured version   Visualization version   GIF version

Theorem opi1 5468
Description: One of the two elements in an ordered pair. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion
Ref Expression
opi1 {𝐴} ∈ ⟨𝐴, 𝐵

Proof of Theorem opi1
StepHypRef Expression
1 snex 5431 . . 3 {𝐴} ∈ V
21prid1 4766 . 2 {𝐴} ∈ {{𝐴}, {𝐴, 𝐵}}
3 opi1.1 . . 3 𝐴 ∈ V
4 opi1.2 . . 3 𝐵 ∈ V
53, 4dfop 4872 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
62, 5eleqtrri 2831 1 {𝐴} ∈ ⟨𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  Vcvv 3473  {csn 4628  {cpr 4630  cop 4634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635
This theorem is referenced by:  opth1  5475  opth  5476
  Copyright terms: Public domain W3C validator