![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opi1 | Structured version Visualization version GIF version |
Description: One of the two elements in an ordered pair. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opi1.1 | ⊢ 𝐴 ∈ V |
opi1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opi1 | ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5433 | . . 3 ⊢ {𝐴} ∈ V | |
2 | 1 | prid1 4768 | . 2 ⊢ {𝐴} ∈ {{𝐴}, {𝐴, 𝐵}} |
3 | opi1.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | opi1.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | dfop 4874 | . 2 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
6 | 2, 5 | eleqtrri 2824 | 1 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3461 {csn 4630 {cpr 4632 〈cop 4636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 |
This theorem is referenced by: opth1 5477 opth 5478 |
Copyright terms: Public domain | W3C validator |