| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opi1 | Structured version Visualization version GIF version | ||
| Description: One of the two elements in an ordered pair. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| opi1.1 | ⊢ 𝐴 ∈ V |
| opi1.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opi1 | ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5406 | . . 3 ⊢ {𝐴} ∈ V | |
| 2 | 1 | prid1 4738 | . 2 ⊢ {𝐴} ∈ {{𝐴}, {𝐴, 𝐵}} |
| 3 | opi1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | opi1.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 5 | 3, 4 | dfop 4848 | . 2 ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 6 | 2, 5 | eleqtrri 2833 | 1 ⊢ {𝐴} ∈ 〈𝐴, 𝐵〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 {csn 4601 {cpr 4603 〈cop 4607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 |
| This theorem is referenced by: opth1 5450 opth 5451 |
| Copyright terms: Public domain | W3C validator |