![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opi1 | Structured version Visualization version GIF version |
Description: One of the two elements in an ordered pair. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opi1.1 | ⊢ 𝐴 ∈ V |
opi1.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opi1 | ⊢ {𝐴} ∈ ⟨𝐴, 𝐵⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5431 | . . 3 ⊢ {𝐴} ∈ V | |
2 | 1 | prid1 4766 | . 2 ⊢ {𝐴} ∈ {{𝐴}, {𝐴, 𝐵}} |
3 | opi1.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | opi1.2 | . . 3 ⊢ 𝐵 ∈ V | |
5 | 3, 4 | dfop 4872 | . 2 ⊢ ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} |
6 | 2, 5 | eleqtrri 2831 | 1 ⊢ {𝐴} ∈ ⟨𝐴, 𝐵⟩ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3473 {csn 4628 {cpr 4630 ⟨cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: opth1 5475 opth 5476 |
Copyright terms: Public domain | W3C validator |