| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elsucg | Structured version Visualization version GIF version | ||
| Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.) |
| Ref | Expression |
|---|---|
| elsucg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6312 | . . . 4 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
| 2 | 1 | eleq2i 2823 | . . 3 ⊢ (𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ (𝐵 ∪ {𝐵})) |
| 3 | elun 4100 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) |
| 5 | elsng 4587 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 6 | 5 | orbi2d 915 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 7 | 4, 6 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 {csn 4573 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-suc 6312 |
| This theorem is referenced by: elsuc 6378 elelsuc 6381 sucidg 6389 ordsssuc 6397 ordsucelsuc 7752 suc11reg 9509 nlt1pi 10797 |
| Copyright terms: Public domain | W3C validator |