MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlti Structured version   Visualization version   GIF version

Theorem om2uzlti 13945
Description: Less-than relation for 𝐺 (see om2uz0i 13942). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzlti ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzlti
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2814 . . . . 5 (𝑧 = ∅ → (𝐴𝑧𝐴 ∈ ∅))
2 fveq2 6890 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
32breq2d 5153 . . . . 5 (𝑧 = ∅ → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘∅)))
41, 3imbi12d 343 . . . 4 (𝑧 = ∅ → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))))
54imbi2d 339 . . 3 (𝑧 = ∅ → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))))
6 eleq2 2814 . . . . 5 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
7 fveq2 6890 . . . . . 6 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
87breq2d 5153 . . . . 5 (𝑧 = 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝑦)))
96, 8imbi12d 343 . . . 4 (𝑧 = 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))))
109imbi2d 339 . . 3 (𝑧 = 𝑦 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))))
11 eleq2 2814 . . . . 5 (𝑧 = suc 𝑦 → (𝐴𝑧𝐴 ∈ suc 𝑦))
12 fveq2 6890 . . . . . 6 (𝑧 = suc 𝑦 → (𝐺𝑧) = (𝐺‘suc 𝑦))
1312breq2d 5153 . . . . 5 (𝑧 = suc 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
1411, 13imbi12d 343 . . . 4 (𝑧 = suc 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
1514imbi2d 339 . . 3 (𝑧 = suc 𝑦 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
16 eleq2 2814 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
17 fveq2 6890 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
1817breq2d 5153 . . . . 5 (𝑧 = 𝐵 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝐵)))
1916, 18imbi12d 343 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
2019imbi2d 339 . . 3 (𝑧 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))))
21 noel 4324 . . . . 5 ¬ 𝐴 ∈ ∅
2221pm2.21i 119 . . . 4 (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))
2322a1i 11 . . 3 (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))
24 id 22 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))
25 fveq2 6890 . . . . . . . 8 (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦))
2625a1i 11 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦)))
2724, 26orim12d 962 . . . . . 6 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → ((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
28 elsuc2g 6431 . . . . . . . . 9 (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦)))
2928bicomd 222 . . . . . . . 8 (𝑦 ∈ ω → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
3029adantl 480 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
31 om2uz.1 . . . . . . . . . . 11 𝐶 ∈ ℤ
32 om2uz.2 . . . . . . . . . . 11 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
3331, 32om2uzsuci 13943 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺‘suc 𝑦) = ((𝐺𝑦) + 1))
3433breq2d 5153 . . . . . . . . 9 (𝑦 ∈ ω → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
3534adantl 480 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
3631, 32om2uzuzi 13944 . . . . . . . . 9 (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
3731, 32om2uzuzi 13944 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶))
38 eluzelz 12860 . . . . . . . . . 10 ((𝐺𝐴) ∈ (ℤ𝐶) → (𝐺𝐴) ∈ ℤ)
39 eluzelz 12860 . . . . . . . . . 10 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
40 zleltp1 12641 . . . . . . . . . 10 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4138, 39, 40syl2an 594 . . . . . . . . 9 (((𝐺𝐴) ∈ (ℤ𝐶) ∧ (𝐺𝑦) ∈ (ℤ𝐶)) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4236, 37, 41syl2an 594 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4336, 38syl 17 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℤ)
4443zred 12694 . . . . . . . . 9 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℝ)
4537, 39syl 17 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℤ)
4645zred 12694 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℝ)
47 leloe 11328 . . . . . . . . 9 (((𝐺𝐴) ∈ ℝ ∧ (𝐺𝑦) ∈ ℝ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
4844, 46, 47syl2an 594 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
4935, 42, 483bitr2rd 307 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦)) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
5030, 49imbi12d 343 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5127, 50imbitrid 243 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5251expcom 412 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
5352a2d 29 . . 3 (𝑦 ∈ ω → ((𝐴 ∈ ω → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))) → (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
545, 10, 15, 20, 23, 53finds 7900 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
5554impcom 406 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  Vcvv 3463  c0 4316   class class class wbr 5141  cmpt 5224  cres 5672  suc csuc 6364  cfv 6541  (class class class)co 7414  ωcom 7866  reccrdg 8426  cr 11135  1c1 11137   + caddc 11139   < clt 11276  cle 11277  cz 12586  cuz 12850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-z 12587  df-uz 12851
This theorem is referenced by:  om2uzlt2i  13946  om2uzf1oi  13948
  Copyright terms: Public domain W3C validator