MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlti Structured version   Visualization version   GIF version

Theorem om2uzlti 13857
Description: Less-than relation for 𝐺 (see om2uz0i 13854). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzlti ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzlti
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2820 . . . . 5 (𝑧 = ∅ → (𝐴𝑧𝐴 ∈ ∅))
2 fveq2 6822 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
32breq2d 5103 . . . . 5 (𝑧 = ∅ → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘∅)))
41, 3imbi12d 344 . . . 4 (𝑧 = ∅ → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))))
54imbi2d 340 . . 3 (𝑧 = ∅ → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))))
6 eleq2 2820 . . . . 5 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
7 fveq2 6822 . . . . . 6 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
87breq2d 5103 . . . . 5 (𝑧 = 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝑦)))
96, 8imbi12d 344 . . . 4 (𝑧 = 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))))
109imbi2d 340 . . 3 (𝑧 = 𝑦 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))))
11 eleq2 2820 . . . . 5 (𝑧 = suc 𝑦 → (𝐴𝑧𝐴 ∈ suc 𝑦))
12 fveq2 6822 . . . . . 6 (𝑧 = suc 𝑦 → (𝐺𝑧) = (𝐺‘suc 𝑦))
1312breq2d 5103 . . . . 5 (𝑧 = suc 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
1411, 13imbi12d 344 . . . 4 (𝑧 = suc 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
1514imbi2d 340 . . 3 (𝑧 = suc 𝑦 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
16 eleq2 2820 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
17 fveq2 6822 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
1817breq2d 5103 . . . . 5 (𝑧 = 𝐵 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝐵)))
1916, 18imbi12d 344 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
2019imbi2d 340 . . 3 (𝑧 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))))
21 noel 4288 . . . . 5 ¬ 𝐴 ∈ ∅
2221pm2.21i 119 . . . 4 (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))
2322a1i 11 . . 3 (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))
24 id 22 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))
25 fveq2 6822 . . . . . . . 8 (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦))
2625a1i 11 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦)))
2724, 26orim12d 966 . . . . . 6 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → ((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
28 elsuc2g 6377 . . . . . . . . 9 (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦)))
2928bicomd 223 . . . . . . . 8 (𝑦 ∈ ω → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
3029adantl 481 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
31 om2uz.1 . . . . . . . . . . 11 𝐶 ∈ ℤ
32 om2uz.2 . . . . . . . . . . 11 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
3331, 32om2uzsuci 13855 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺‘suc 𝑦) = ((𝐺𝑦) + 1))
3433breq2d 5103 . . . . . . . . 9 (𝑦 ∈ ω → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
3534adantl 481 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
3631, 32om2uzuzi 13856 . . . . . . . . 9 (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
3731, 32om2uzuzi 13856 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶))
38 eluzelz 12742 . . . . . . . . . 10 ((𝐺𝐴) ∈ (ℤ𝐶) → (𝐺𝐴) ∈ ℤ)
39 eluzelz 12742 . . . . . . . . . 10 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
40 zleltp1 12523 . . . . . . . . . 10 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4138, 39, 40syl2an 596 . . . . . . . . 9 (((𝐺𝐴) ∈ (ℤ𝐶) ∧ (𝐺𝑦) ∈ (ℤ𝐶)) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4236, 37, 41syl2an 596 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4336, 38syl 17 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℤ)
4443zred 12577 . . . . . . . . 9 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℝ)
4537, 39syl 17 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℤ)
4645zred 12577 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℝ)
47 leloe 11199 . . . . . . . . 9 (((𝐺𝐴) ∈ ℝ ∧ (𝐺𝑦) ∈ ℝ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
4844, 46, 47syl2an 596 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
4935, 42, 483bitr2rd 308 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦)) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
5030, 49imbi12d 344 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5127, 50imbitrid 244 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5251expcom 413 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
5352a2d 29 . . 3 (𝑦 ∈ ω → ((𝐴 ∈ ω → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))) → (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
545, 10, 15, 20, 23, 53finds 7826 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
5554impcom 407 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283   class class class wbr 5091  cmpt 5172  cres 5618  suc csuc 6308  cfv 6481  (class class class)co 7346  ωcom 7796  reccrdg 8328  cr 11005  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cz 12468  cuz 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733
This theorem is referenced by:  om2uzlt2i  13858  om2uzf1oi  13860
  Copyright terms: Public domain W3C validator