MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlti Structured version   Visualization version   GIF version

Theorem om2uzlti 13312
Description: Less-than relation for 𝐺 (see om2uz0i 13309). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzlti ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzlti
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2901 . . . . 5 (𝑧 = ∅ → (𝐴𝑧𝐴 ∈ ∅))
2 fveq2 6664 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
32breq2d 5070 . . . . 5 (𝑧 = ∅ → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘∅)))
41, 3imbi12d 347 . . . 4 (𝑧 = ∅ → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))))
54imbi2d 343 . . 3 (𝑧 = ∅ → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))))
6 eleq2 2901 . . . . 5 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
7 fveq2 6664 . . . . . 6 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
87breq2d 5070 . . . . 5 (𝑧 = 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝑦)))
96, 8imbi12d 347 . . . 4 (𝑧 = 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))))
109imbi2d 343 . . 3 (𝑧 = 𝑦 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))))
11 eleq2 2901 . . . . 5 (𝑧 = suc 𝑦 → (𝐴𝑧𝐴 ∈ suc 𝑦))
12 fveq2 6664 . . . . . 6 (𝑧 = suc 𝑦 → (𝐺𝑧) = (𝐺‘suc 𝑦))
1312breq2d 5070 . . . . 5 (𝑧 = suc 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
1411, 13imbi12d 347 . . . 4 (𝑧 = suc 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
1514imbi2d 343 . . 3 (𝑧 = suc 𝑦 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
16 eleq2 2901 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
17 fveq2 6664 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
1817breq2d 5070 . . . . 5 (𝑧 = 𝐵 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝐵)))
1916, 18imbi12d 347 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
2019imbi2d 343 . . 3 (𝑧 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))))
21 noel 4295 . . . . 5 ¬ 𝐴 ∈ ∅
2221pm2.21i 119 . . . 4 (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))
2322a1i 11 . . 3 (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))
24 id 22 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))
25 fveq2 6664 . . . . . . . 8 (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦))
2625a1i 11 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦)))
2724, 26orim12d 961 . . . . . 6 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → ((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
28 elsuc2g 6253 . . . . . . . . 9 (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦)))
2928bicomd 225 . . . . . . . 8 (𝑦 ∈ ω → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
3029adantl 484 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
31 om2uz.1 . . . . . . . . . . 11 𝐶 ∈ ℤ
32 om2uz.2 . . . . . . . . . . 11 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
3331, 32om2uzsuci 13310 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺‘suc 𝑦) = ((𝐺𝑦) + 1))
3433breq2d 5070 . . . . . . . . 9 (𝑦 ∈ ω → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
3534adantl 484 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
3631, 32om2uzuzi 13311 . . . . . . . . 9 (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
3731, 32om2uzuzi 13311 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶))
38 eluzelz 12247 . . . . . . . . . 10 ((𝐺𝐴) ∈ (ℤ𝐶) → (𝐺𝐴) ∈ ℤ)
39 eluzelz 12247 . . . . . . . . . 10 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
40 zleltp1 12027 . . . . . . . . . 10 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4138, 39, 40syl2an 597 . . . . . . . . 9 (((𝐺𝐴) ∈ (ℤ𝐶) ∧ (𝐺𝑦) ∈ (ℤ𝐶)) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4236, 37, 41syl2an 597 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4336, 38syl 17 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℤ)
4443zred 12081 . . . . . . . . 9 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℝ)
4537, 39syl 17 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℤ)
4645zred 12081 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℝ)
47 leloe 10721 . . . . . . . . 9 (((𝐺𝐴) ∈ ℝ ∧ (𝐺𝑦) ∈ ℝ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
4844, 46, 47syl2an 597 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
4935, 42, 483bitr2rd 310 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦)) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
5030, 49imbi12d 347 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5127, 50syl5ib 246 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5251expcom 416 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
5352a2d 29 . . 3 (𝑦 ∈ ω → ((𝐴 ∈ ω → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))) → (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
545, 10, 15, 20, 23, 53finds 7602 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
5554impcom 410 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  Vcvv 3494  c0 4290   class class class wbr 5058  cmpt 5138  cres 5551  suc csuc 6187  cfv 6349  (class class class)co 7150  ωcom 7574  reccrdg 8039  cr 10530  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cz 11975  cuz 12237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238
This theorem is referenced by:  om2uzlt2i  13313  om2uzf1oi  13315
  Copyright terms: Public domain W3C validator