Step | Hyp | Ref
| Expression |
1 | | eleq2 2827 |
. . . . 5
⊢ (𝑧 = ∅ → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ ∅)) |
2 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = ∅ → (𝐺‘𝑧) = (𝐺‘∅)) |
3 | 2 | breq2d 5086 |
. . . . 5
⊢ (𝑧 = ∅ → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘∅))) |
4 | 1, 3 | imbi12d 345 |
. . . 4
⊢ (𝑧 = ∅ → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅)))) |
5 | 4 | imbi2d 341 |
. . 3
⊢ (𝑧 = ∅ → ((𝐴 ∈ ω → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅))))) |
6 | | eleq2 2827 |
. . . . 5
⊢ (𝑧 = 𝑦 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑦)) |
7 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = 𝑦 → (𝐺‘𝑧) = (𝐺‘𝑦)) |
8 | 7 | breq2d 5086 |
. . . . 5
⊢ (𝑧 = 𝑦 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘𝑦))) |
9 | 6, 8 | imbi12d 345 |
. . . 4
⊢ (𝑧 = 𝑦 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)))) |
10 | 9 | imbi2d 341 |
. . 3
⊢ (𝑧 = 𝑦 → ((𝐴 ∈ ω → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))))) |
11 | | eleq2 2827 |
. . . . 5
⊢ (𝑧 = suc 𝑦 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ suc 𝑦)) |
12 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = suc 𝑦 → (𝐺‘𝑧) = (𝐺‘suc 𝑦)) |
13 | 12 | breq2d 5086 |
. . . . 5
⊢ (𝑧 = suc 𝑦 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘suc 𝑦))) |
14 | 11, 13 | imbi12d 345 |
. . . 4
⊢ (𝑧 = suc 𝑦 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) |
15 | 14 | imbi2d 341 |
. . 3
⊢ (𝑧 = suc 𝑦 → ((𝐴 ∈ ω → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) |
16 | | eleq2 2827 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝐵)) |
17 | | fveq2 6774 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝐺‘𝑧) = (𝐺‘𝐵)) |
18 | 17 | breq2d 5086 |
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
19 | 16, 18 | imbi12d 345 |
. . . 4
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵)))) |
20 | 19 | imbi2d 341 |
. . 3
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))))) |
21 | | noel 4264 |
. . . . 5
⊢ ¬
𝐴 ∈
∅ |
22 | 21 | pm2.21i 119 |
. . . 4
⊢ (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅)) |
23 | 22 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅))) |
24 | | id 22 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))) |
25 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝐴 = 𝑦 → (𝐺‘𝐴) = (𝐺‘𝑦)) |
26 | 25 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 = 𝑦 → (𝐺‘𝐴) = (𝐺‘𝑦))) |
27 | 24, 26 | orim12d 962 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) |
28 | | elsuc2g 6334 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦))) |
29 | 28 | bicomd 222 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦)) |
30 | 29 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦)) |
31 | | om2uz.1 |
. . . . . . . . . . 11
⊢ 𝐶 ∈ ℤ |
32 | | om2uz.2 |
. . . . . . . . . . 11
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
33 | 31, 32 | om2uzsuci 13668 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → (𝐺‘suc 𝑦) = ((𝐺‘𝑦) + 1)) |
34 | 33 | breq2d 5086 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → ((𝐺‘𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) |
35 | 34 | adantl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺‘𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) |
36 | 31, 32 | om2uzuzi 13669 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
37 | 31, 32 | om2uzuzi 13669 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) |
38 | | eluzelz 12592 |
. . . . . . . . . 10
⊢ ((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐴) ∈ ℤ) |
39 | | eluzelz 12592 |
. . . . . . . . . 10
⊢ ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑦) ∈ ℤ) |
40 | | zleltp1 12371 |
. . . . . . . . . 10
⊢ (((𝐺‘𝐴) ∈ ℤ ∧ (𝐺‘𝑦) ∈ ℤ) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) |
41 | 38, 39, 40 | syl2an 596 |
. . . . . . . . 9
⊢ (((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) ∧ (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) |
42 | 36, 37, 41 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) |
43 | 36, 38 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ ℤ) |
44 | 43 | zred 12426 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ ℝ) |
45 | 37, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℤ) |
46 | 45 | zred 12426 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℝ) |
47 | | leloe 11061 |
. . . . . . . . 9
⊢ (((𝐺‘𝐴) ∈ ℝ ∧ (𝐺‘𝑦) ∈ ℝ) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) |
48 | 44, 46, 47 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) |
49 | 35, 42, 48 | 3bitr2rd 308 |
. . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)) ↔ (𝐺‘𝐴) < (𝐺‘suc 𝑦))) |
50 | 30, 49 | imbi12d 345 |
. . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) |
51 | 27, 50 | syl5ib 243 |
. . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) |
52 | 51 | expcom 414 |
. . . 4
⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) |
53 | 52 | a2d 29 |
. . 3
⊢ (𝑦 ∈ ω → ((𝐴 ∈ ω → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))) → (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) |
54 | 5, 10, 15, 20, 23, 53 | finds 7745 |
. 2
⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵)))) |
55 | 54 | impcom 408 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |