MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlti Structured version   Visualization version   GIF version

Theorem om2uzlti 13131
Description: Less-than relation for 𝐺 (see om2uz0i 13128). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzlti ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem om2uzlti
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2847 . . . . 5 (𝑧 = ∅ → (𝐴𝑧𝐴 ∈ ∅))
2 fveq2 6496 . . . . . 6 (𝑧 = ∅ → (𝐺𝑧) = (𝐺‘∅))
32breq2d 4937 . . . . 5 (𝑧 = ∅ → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘∅)))
41, 3imbi12d 337 . . . 4 (𝑧 = ∅ → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))))
54imbi2d 333 . . 3 (𝑧 = ∅ → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))))
6 eleq2 2847 . . . . 5 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
7 fveq2 6496 . . . . . 6 (𝑧 = 𝑦 → (𝐺𝑧) = (𝐺𝑦))
87breq2d 4937 . . . . 5 (𝑧 = 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝑦)))
96, 8imbi12d 337 . . . 4 (𝑧 = 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))))
109imbi2d 333 . . 3 (𝑧 = 𝑦 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))))
11 eleq2 2847 . . . . 5 (𝑧 = suc 𝑦 → (𝐴𝑧𝐴 ∈ suc 𝑦))
12 fveq2 6496 . . . . . 6 (𝑧 = suc 𝑦 → (𝐺𝑧) = (𝐺‘suc 𝑦))
1312breq2d 4937 . . . . 5 (𝑧 = suc 𝑦 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
1411, 13imbi12d 337 . . . 4 (𝑧 = suc 𝑦 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
1514imbi2d 333 . . 3 (𝑧 = suc 𝑦 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
16 eleq2 2847 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
17 fveq2 6496 . . . . . 6 (𝑧 = 𝐵 → (𝐺𝑧) = (𝐺𝐵))
1817breq2d 4937 . . . . 5 (𝑧 = 𝐵 → ((𝐺𝐴) < (𝐺𝑧) ↔ (𝐺𝐴) < (𝐺𝐵)))
1916, 18imbi12d 337 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧)) ↔ (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
2019imbi2d 333 . . 3 (𝑧 = 𝐵 → ((𝐴 ∈ ω → (𝐴𝑧 → (𝐺𝐴) < (𝐺𝑧))) ↔ (𝐴 ∈ ω → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))))
21 noel 4177 . . . . 5 ¬ 𝐴 ∈ ∅
2221pm2.21i 117 . . . 4 (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅))
2322a1i 11 . . 3 (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺𝐴) < (𝐺‘∅)))
24 id 22 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)))
25 fveq2 6496 . . . . . . . 8 (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦))
2625a1i 11 . . . . . . 7 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 = 𝑦 → (𝐺𝐴) = (𝐺𝑦)))
2724, 26orim12d 948 . . . . . 6 ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → ((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
28 elsuc2g 6094 . . . . . . . . 9 (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴𝑦𝐴 = 𝑦)))
2928bicomd 215 . . . . . . . 8 (𝑦 ∈ ω → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
3029adantl 474 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦))
31 om2uz.1 . . . . . . . . . . 11 𝐶 ∈ ℤ
32 om2uz.2 . . . . . . . . . . 11 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
3331, 32om2uzsuci 13129 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺‘suc 𝑦) = ((𝐺𝑦) + 1))
3433breq2d 4937 . . . . . . . . 9 (𝑦 ∈ ω → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
3534adantl 474 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
3631, 32om2uzuzi 13130 . . . . . . . . 9 (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))
3731, 32om2uzuzi 13130 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶))
38 eluzelz 12066 . . . . . . . . . 10 ((𝐺𝐴) ∈ (ℤ𝐶) → (𝐺𝐴) ∈ ℤ)
39 eluzelz 12066 . . . . . . . . . 10 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
40 zleltp1 11844 . . . . . . . . . 10 (((𝐺𝐴) ∈ ℤ ∧ (𝐺𝑦) ∈ ℤ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4138, 39, 40syl2an 587 . . . . . . . . 9 (((𝐺𝐴) ∈ (ℤ𝐶) ∧ (𝐺𝑦) ∈ (ℤ𝐶)) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4236, 37, 41syl2an 587 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ (𝐺𝐴) < ((𝐺𝑦) + 1)))
4336, 38syl 17 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℤ)
4443zred 11898 . . . . . . . . 9 (𝐴 ∈ ω → (𝐺𝐴) ∈ ℝ)
4537, 39syl 17 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℤ)
4645zred 11898 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℝ)
47 leloe 10525 . . . . . . . . 9 (((𝐺𝐴) ∈ ℝ ∧ (𝐺𝑦) ∈ ℝ) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
4844, 46, 47syl2an 587 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺𝐴) ≤ (𝐺𝑦) ↔ ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))))
4935, 42, 483bitr2rd 300 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦)) ↔ (𝐺𝐴) < (𝐺‘suc 𝑦)))
5030, 49imbi12d 337 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴𝑦𝐴 = 𝑦) → ((𝐺𝐴) < (𝐺𝑦) ∨ (𝐺𝐴) = (𝐺𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5127, 50syl5ib 236 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦))))
5251expcom 406 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
5352a2d 29 . . 3 (𝑦 ∈ ω → ((𝐴 ∈ ω → (𝐴𝑦 → (𝐺𝐴) < (𝐺𝑦))) → (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺𝐴) < (𝐺‘suc 𝑦)))))
545, 10, 15, 20, 23, 53finds 7421 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵))))
5554impcom 399 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐺𝐴) < (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 834   = wceq 1508  wcel 2051  Vcvv 3408  c0 4172   class class class wbr 4925  cmpt 5004  cres 5405  suc csuc 6028  cfv 6185  (class class class)co 6974  ωcom 7394  reccrdg 7847  cr 10332  1c1 10334   + caddc 10336   < clt 10472  cle 10473  cz 11791  cuz 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-n0 11706  df-z 11792  df-uz 12057
This theorem is referenced by:  om2uzlt2i  13132  om2uzf1oi  13134
  Copyright terms: Public domain W3C validator