| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eleq2 2830 | . . . . 5
⊢ (𝑧 = ∅ → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ ∅)) | 
| 2 |  | fveq2 6906 | . . . . . 6
⊢ (𝑧 = ∅ → (𝐺‘𝑧) = (𝐺‘∅)) | 
| 3 | 2 | breq2d 5155 | . . . . 5
⊢ (𝑧 = ∅ → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘∅))) | 
| 4 | 1, 3 | imbi12d 344 | . . . 4
⊢ (𝑧 = ∅ → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅)))) | 
| 5 | 4 | imbi2d 340 | . . 3
⊢ (𝑧 = ∅ → ((𝐴 ∈ ω → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅))))) | 
| 6 |  | eleq2 2830 | . . . . 5
⊢ (𝑧 = 𝑦 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑦)) | 
| 7 |  | fveq2 6906 | . . . . . 6
⊢ (𝑧 = 𝑦 → (𝐺‘𝑧) = (𝐺‘𝑦)) | 
| 8 | 7 | breq2d 5155 | . . . . 5
⊢ (𝑧 = 𝑦 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘𝑦))) | 
| 9 | 6, 8 | imbi12d 344 | . . . 4
⊢ (𝑧 = 𝑦 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)))) | 
| 10 | 9 | imbi2d 340 | . . 3
⊢ (𝑧 = 𝑦 → ((𝐴 ∈ ω → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))))) | 
| 11 |  | eleq2 2830 | . . . . 5
⊢ (𝑧 = suc 𝑦 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ suc 𝑦)) | 
| 12 |  | fveq2 6906 | . . . . . 6
⊢ (𝑧 = suc 𝑦 → (𝐺‘𝑧) = (𝐺‘suc 𝑦)) | 
| 13 | 12 | breq2d 5155 | . . . . 5
⊢ (𝑧 = suc 𝑦 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘suc 𝑦))) | 
| 14 | 11, 13 | imbi12d 344 | . . . 4
⊢ (𝑧 = suc 𝑦 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) | 
| 15 | 14 | imbi2d 340 | . . 3
⊢ (𝑧 = suc 𝑦 → ((𝐴 ∈ ω → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) | 
| 16 |  | eleq2 2830 | . . . . 5
⊢ (𝑧 = 𝐵 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝐵)) | 
| 17 |  | fveq2 6906 | . . . . . 6
⊢ (𝑧 = 𝐵 → (𝐺‘𝑧) = (𝐺‘𝐵)) | 
| 18 | 17 | breq2d 5155 | . . . . 5
⊢ (𝑧 = 𝐵 → ((𝐺‘𝐴) < (𝐺‘𝑧) ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) | 
| 19 | 16, 18 | imbi12d 344 | . . . 4
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧)) ↔ (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵)))) | 
| 20 | 19 | imbi2d 340 | . . 3
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ∈ 𝑧 → (𝐺‘𝐴) < (𝐺‘𝑧))) ↔ (𝐴 ∈ ω → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))))) | 
| 21 |  | noel 4338 | . . . . 5
⊢  ¬
𝐴 ∈
∅ | 
| 22 | 21 | pm2.21i 119 | . . . 4
⊢ (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅)) | 
| 23 | 22 | a1i 11 | . . 3
⊢ (𝐴 ∈ ω → (𝐴 ∈ ∅ → (𝐺‘𝐴) < (𝐺‘∅))) | 
| 24 |  | id 22 | . . . . . . 7
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))) | 
| 25 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝐴 = 𝑦 → (𝐺‘𝐴) = (𝐺‘𝑦)) | 
| 26 | 25 | a1i 11 | . . . . . . 7
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 = 𝑦 → (𝐺‘𝐴) = (𝐺‘𝑦))) | 
| 27 | 24, 26 | orim12d 967 | . . . . . 6
⊢ ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) | 
| 28 |  | elsuc2g 6453 | . . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝐴 ∈ suc 𝑦 ↔ (𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦))) | 
| 29 | 28 | bicomd 223 | . . . . . . . 8
⊢ (𝑦 ∈ ω → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦)) | 
| 30 | 29 | adantl 481 | . . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) ↔ 𝐴 ∈ suc 𝑦)) | 
| 31 |  | om2uz.1 | . . . . . . . . . . 11
⊢ 𝐶 ∈ ℤ | 
| 32 |  | om2uz.2 | . . . . . . . . . . 11
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | 
| 33 | 31, 32 | om2uzsuci 13989 | . . . . . . . . . 10
⊢ (𝑦 ∈ ω → (𝐺‘suc 𝑦) = ((𝐺‘𝑦) + 1)) | 
| 34 | 33 | breq2d 5155 | . . . . . . . . 9
⊢ (𝑦 ∈ ω → ((𝐺‘𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) | 
| 35 | 34 | adantl 481 | . . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺‘𝐴) < (𝐺‘suc 𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) | 
| 36 | 31, 32 | om2uzuzi 13990 | . . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) | 
| 37 | 31, 32 | om2uzuzi 13990 | . . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) | 
| 38 |  | eluzelz 12888 | . . . . . . . . . 10
⊢ ((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐴) ∈ ℤ) | 
| 39 |  | eluzelz 12888 | . . . . . . . . . 10
⊢ ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑦) ∈ ℤ) | 
| 40 |  | zleltp1 12668 | . . . . . . . . . 10
⊢ (((𝐺‘𝐴) ∈ ℤ ∧ (𝐺‘𝑦) ∈ ℤ) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) | 
| 41 | 38, 39, 40 | syl2an 596 | . . . . . . . . 9
⊢ (((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) ∧ (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) | 
| 42 | 36, 37, 41 | syl2an 596 | . . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ (𝐺‘𝐴) < ((𝐺‘𝑦) + 1))) | 
| 43 | 36, 38 | syl 17 | . . . . . . . . . 10
⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ ℤ) | 
| 44 | 43 | zred 12722 | . . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ ℝ) | 
| 45 | 37, 39 | syl 17 | . . . . . . . . . 10
⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℤ) | 
| 46 | 45 | zred 12722 | . . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℝ) | 
| 47 |  | leloe 11347 | . . . . . . . . 9
⊢ (((𝐺‘𝐴) ∈ ℝ ∧ (𝐺‘𝑦) ∈ ℝ) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) | 
| 48 | 44, 46, 47 | syl2an 596 | . . . . . . . 8
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐺‘𝐴) ≤ (𝐺‘𝑦) ↔ ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)))) | 
| 49 | 35, 42, 48 | 3bitr2rd 308 | . . . . . . 7
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦)) ↔ (𝐺‘𝐴) < (𝐺‘suc 𝑦))) | 
| 50 | 30, 49 | imbi12d 344 | . . . . . 6
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦) → ((𝐺‘𝐴) < (𝐺‘𝑦) ∨ (𝐺‘𝐴) = (𝐺‘𝑦))) ↔ (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) | 
| 51 | 27, 50 | imbitrid 244 | . . . . 5
⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦)))) | 
| 52 | 51 | expcom 413 | . . . 4
⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) | 
| 53 | 52 | a2d 29 | . . 3
⊢ (𝑦 ∈ ω → ((𝐴 ∈ ω → (𝐴 ∈ 𝑦 → (𝐺‘𝐴) < (𝐺‘𝑦))) → (𝐴 ∈ ω → (𝐴 ∈ suc 𝑦 → (𝐺‘𝐴) < (𝐺‘suc 𝑦))))) | 
| 54 | 5, 10, 15, 20, 23, 53 | finds 7918 | . 2
⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵)))) | 
| 55 | 54 | impcom 407 | 1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |