MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabf Structured version   Visualization version   GIF version

Theorem eqabf 2933
Description: Equality of a class variable and a class abstraction. In this version, the fact that 𝑥 is a nonfree variable in 𝐴 is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.) Avoid ax-13 2375. (Revised by Wolf Lammen, 13-May-2023.)
Hypothesis
Ref Expression
eqabf.0 𝑥𝐴
Assertion
Ref Expression
eqabf (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))

Proof of Theorem eqabf
StepHypRef Expression
1 eqabf.0 . . 3 𝑥𝐴
2 nfab1 2905 . . 3 𝑥{𝑥𝜑}
31, 2cleqf 2932 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}))
4 abid 2716 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
54bibi2i 337 . . 3 ((𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ (𝑥𝐴𝜑))
65albii 1816 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ ∀𝑥(𝑥𝐴𝜑))
73, 6bitri 275 1 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  wcel 2106  {cab 2712  wnfc 2888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890
This theorem is referenced by:  abid2f  2934  rabid2f  3466  mptfnf  6704
  Copyright terms: Public domain W3C validator