![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabf | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction. In this version, the fact that 𝑥 is a nonfree variable in 𝐴 is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.) Avoid ax-13 2372. (Revised by Wolf Lammen, 13-May-2023.) |
Ref | Expression |
---|---|
eqabf.0 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
eqabf | ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabf.0 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfab1 2906 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
3 | 1, 2 | cleqf 2935 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) |
4 | abid 2714 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
5 | 4 | bibi2i 338 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) |
6 | 5 | albii 1822 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
7 | 3, 6 | bitri 275 | 1 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2107 {cab 2710 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 |
This theorem is referenced by: abid2f 2937 rabid2f 3464 mptfnf 6686 |
Copyright terms: Public domain | W3C validator |