| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabf | Structured version Visualization version GIF version | ||
| Description: Equality of a class variable and a class abstraction. In this version, the fact that 𝑥 is a nonfree variable in 𝐴 is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.) Avoid ax-13 2375. (Revised by Wolf Lammen, 13-May-2023.) |
| Ref | Expression |
|---|---|
| eqabf.0 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| eqabf | ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabf.0 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfab1 2899 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
| 3 | 1, 2 | cleqf 2926 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) |
| 4 | abid 2716 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 5 | 4 | bibi2i 337 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 6 | 5 | albii 1818 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
| 7 | 3, 6 | bitri 275 | 1 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1537 = wceq 1539 ∈ wcel 2107 {cab 2712 Ⅎwnfc 2882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 |
| This theorem is referenced by: abid2f 2928 rabid2f 3452 mptfnf 6684 |
| Copyright terms: Public domain | W3C validator |