MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfnf Structured version   Visualization version   GIF version

Theorem mptfnf 6477
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypothesis
Ref Expression
mptfnf.0 𝑥𝐴
Assertion
Ref Expression
mptfnf (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)

Proof of Theorem mptfnf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eueq 3698 . . 3 (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵)
21ralbii 3165 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵)
3 r19.26 3170 . . 3 (∀𝑥𝐴 (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵) ↔ (∀𝑥𝐴𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵))
4 df-eu 2650 . . . 4 (∃!𝑦 𝑦 = 𝐵 ↔ (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵))
54ralbii 3165 . . 3 (∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵 ↔ ∀𝑥𝐴 (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵))
6 df-mpt 5139 . . . . . 6 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
76fneq1i 6444 . . . . 5 ((𝑥𝐴𝐵) Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} Fn 𝐴)
8 df-fn 6352 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴))
97, 8bitri 277 . . . 4 ((𝑥𝐴𝐵) Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴))
10 moanimv 2700 . . . . . . 7 (∃*𝑦(𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴 → ∃*𝑦 𝑦 = 𝐵))
1110albii 1816 . . . . . 6 (∀𝑥∃*𝑦(𝑥𝐴𝑦 = 𝐵) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑦 = 𝐵))
12 funopab 6384 . . . . . 6 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝑦 = 𝐵))
13 df-ral 3143 . . . . . 6 (∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑦 = 𝐵))
1411, 12, 133bitr4ri 306 . . . . 5 (∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)})
15 eqcom 2828 . . . . . 6 ({𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} = 𝐴𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)})
16 dmopab 5778 . . . . . . . 8 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 = 𝐵)}
17 19.42v 1950 . . . . . . . . 9 (∃𝑦(𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
1817abbii 2886 . . . . . . . 8 {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 = 𝐵)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)}
1916, 18eqtri 2844 . . . . . . 7 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)}
2019eqeq1i 2826 . . . . . 6 (dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴 ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} = 𝐴)
21 pm4.71 560 . . . . . . . 8 ((𝑥𝐴 → ∃𝑦 𝑦 = 𝐵) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)))
2221albii 1816 . . . . . . 7 (∀𝑥(𝑥𝐴 → ∃𝑦 𝑦 = 𝐵) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)))
23 df-ral 3143 . . . . . . 7 (∀𝑥𝐴𝑦 𝑦 = 𝐵 ↔ ∀𝑥(𝑥𝐴 → ∃𝑦 𝑦 = 𝐵))
24 mptfnf.0 . . . . . . . 8 𝑥𝐴
2524abeq2f 3013 . . . . . . 7 (𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)))
2622, 23, 253bitr4i 305 . . . . . 6 (∀𝑥𝐴𝑦 𝑦 = 𝐵𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)})
2715, 20, 263bitr4ri 306 . . . . 5 (∀𝑥𝐴𝑦 𝑦 = 𝐵 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴)
2814, 27anbi12i 628 . . . 4 ((∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴𝑦 𝑦 = 𝐵) ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴))
29 ancom 463 . . . 4 ((∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴𝑦 𝑦 = 𝐵) ↔ (∀𝑥𝐴𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵))
309, 28, 293bitr2i 301 . . 3 ((𝑥𝐴𝐵) Fn 𝐴 ↔ (∀𝑥𝐴𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵))
313, 5, 303bitr4ri 306 . 2 ((𝑥𝐴𝐵) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵)
322, 31bitr4i 280 1 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wex 1776  wcel 2110  ∃*wmo 2616  ∃!weu 2649  {cab 2799  wnfc 2961  wral 3138  Vcvv 3494  {copab 5120  cmpt 5138  dom cdm 5549  Fun wfun 6343   Fn wfn 6344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-fun 6351  df-fn 6352
This theorem is referenced by:  fnmptf  6478  mptfnd  41505
  Copyright terms: Public domain W3C validator