Step | Hyp | Ref
| Expression |
1 | | eueq 3624 |
. . 3
⊢ (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵) |
2 | 1 | ralbii 3097 |
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ V ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑦 = 𝐵) |
3 | | r19.26 3101 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃*𝑦 𝑦 = 𝐵)) |
4 | | df-eu 2588 |
. . . 4
⊢
(∃!𝑦 𝑦 = 𝐵 ↔ (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵)) |
5 | 4 | ralbii 3097 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∃!𝑦 𝑦 = 𝐵 ↔ ∀𝑥 ∈ 𝐴 (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵)) |
6 | | df-mpt 5117 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
7 | 6 | fneq1i 6436 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} Fn 𝐴) |
8 | | df-fn 6343 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} Fn 𝐴 ↔ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ∧ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = 𝐴)) |
9 | 7, 8 | bitri 278 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ↔ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ∧ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = 𝐴)) |
10 | | moanimv 2640 |
. . . . . . 7
⊢
(∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦 𝑦 = 𝐵)) |
11 | 10 | albii 1821 |
. . . . . 6
⊢
(∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦 𝑦 = 𝐵)) |
12 | | funopab 6375 |
. . . . . 6
⊢ (Fun
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)) |
13 | | df-ral 3075 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∃*𝑦 𝑦 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦 𝑦 = 𝐵)) |
14 | 11, 12, 13 | 3bitr4ri 307 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∃*𝑦 𝑦 = 𝐵 ↔ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)}) |
15 | | eqcom 2765 |
. . . . . 6
⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} = 𝐴 ↔ 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)}) |
16 | | dmopab 5761 |
. . . . . . . 8
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
17 | | 19.42v 1954 |
. . . . . . . . 9
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
18 | 17 | abbii 2823 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} |
19 | 16, 18 | eqtri 2781 |
. . . . . . 7
⊢ dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} |
20 | 19 | eqeq1i 2763 |
. . . . . 6
⊢ (dom
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = 𝐴 ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} = 𝐴) |
21 | | pm4.71 561 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 → ∃𝑦 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))) |
22 | 21 | albii 1821 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦 𝑦 = 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))) |
23 | | df-ral 3075 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 𝑦 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃𝑦 𝑦 = 𝐵)) |
24 | | mptfnf.0 |
. . . . . . . 8
⊢
Ⅎ𝑥𝐴 |
25 | 24 | abeq2f 2949 |
. . . . . . 7
⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))) |
26 | 22, 23, 25 | 3bitr4i 306 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 𝑦 = 𝐵 ↔ 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)}) |
27 | 15, 20, 26 | 3bitr4ri 307 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 𝑦 = 𝐵 ↔ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = 𝐴) |
28 | 14, 27 | anbi12i 629 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 ∃*𝑦 𝑦 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵) ↔ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} ∧ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = 𝐴)) |
29 | | ancom 464 |
. . . 4
⊢
((∀𝑥 ∈
𝐴 ∃*𝑦 𝑦 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃*𝑦 𝑦 = 𝐵)) |
30 | 9, 28, 29 | 3bitr2i 302 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ↔ (∀𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃*𝑦 𝑦 = 𝐵)) |
31 | 3, 5, 30 | 3bitr4ri 307 |
. 2
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃!𝑦 𝑦 = 𝐵) |
32 | 2, 31 | bitr4i 281 |
1
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ V ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |