MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptfnf Structured version   Visualization version   GIF version

Theorem mptfnf 6249
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypothesis
Ref Expression
mptfnf.0 𝑥𝐴
Assertion
Ref Expression
mptfnf (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)

Proof of Theorem mptfnf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eueq 3603 . . 3 (𝐵 ∈ V ↔ ∃!𝑦 𝑦 = 𝐵)
21ralbii 3190 . 2 (∀𝑥𝐴 𝐵 ∈ V ↔ ∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵)
3 r19.26 3275 . . 3 (∀𝑥𝐴 (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵) ↔ (∀𝑥𝐴𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵))
4 df-eu 2641 . . . 4 (∃!𝑦 𝑦 = 𝐵 ↔ (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵))
54ralbii 3190 . . 3 (∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵 ↔ ∀𝑥𝐴 (∃𝑦 𝑦 = 𝐵 ∧ ∃*𝑦 𝑦 = 𝐵))
6 df-mpt 4954 . . . . . 6 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
76fneq1i 6219 . . . . 5 ((𝑥𝐴𝐵) Fn 𝐴 ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} Fn 𝐴)
8 df-fn 6127 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴))
97, 8bitri 267 . . . 4 ((𝑥𝐴𝐵) Fn 𝐴 ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴))
10 moanimv 2708 . . . . . . 7 (∃*𝑦(𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴 → ∃*𝑦 𝑦 = 𝐵))
1110albii 1920 . . . . . 6 (∀𝑥∃*𝑦(𝑥𝐴𝑦 = 𝐵) ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑦 = 𝐵))
12 funopab 6159 . . . . . 6 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝑦 = 𝐵))
13 df-ral 3123 . . . . . 6 (∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ↔ ∀𝑥(𝑥𝐴 → ∃*𝑦 𝑦 = 𝐵))
1411, 12, 133bitr4ri 296 . . . . 5 (∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)})
15 eqcom 2833 . . . . . 6 ({𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} = 𝐴𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)})
16 dmopab 5568 . . . . . . . 8 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 = 𝐵)}
17 19.42v 2054 . . . . . . . . 9 (∃𝑦(𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
1817abbii 2945 . . . . . . . 8 {𝑥 ∣ ∃𝑦(𝑥𝐴𝑦 = 𝐵)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)}
1916, 18eqtri 2850 . . . . . . 7 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)}
2019eqeq1i 2831 . . . . . 6 (dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴 ↔ {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} = 𝐴)
21 pm4.71 555 . . . . . . . 8 ((𝑥𝐴 → ∃𝑦 𝑦 = 𝐵) ↔ (𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)))
2221albii 1920 . . . . . . 7 (∀𝑥(𝑥𝐴 → ∃𝑦 𝑦 = 𝐵) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)))
23 df-ral 3123 . . . . . . 7 (∀𝑥𝐴𝑦 𝑦 = 𝐵 ↔ ∀𝑥(𝑥𝐴 → ∃𝑦 𝑦 = 𝐵))
24 mptfnf.0 . . . . . . . 8 𝑥𝐴
2524abeq2f 2998 . . . . . . 7 (𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)} ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)))
2622, 23, 253bitr4i 295 . . . . . 6 (∀𝑥𝐴𝑦 𝑦 = 𝐵𝐴 = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦 𝑦 = 𝐵)})
2715, 20, 263bitr4ri 296 . . . . 5 (∀𝑥𝐴𝑦 𝑦 = 𝐵 ↔ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴)
2814, 27anbi12i 622 . . . 4 ((∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴𝑦 𝑦 = 𝐵) ↔ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = 𝐴))
29 ancom 454 . . . 4 ((∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴𝑦 𝑦 = 𝐵) ↔ (∀𝑥𝐴𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵))
309, 28, 293bitr2i 291 . . 3 ((𝑥𝐴𝐵) Fn 𝐴 ↔ (∀𝑥𝐴𝑦 𝑦 = 𝐵 ∧ ∀𝑥𝐴 ∃*𝑦 𝑦 = 𝐵))
313, 5, 303bitr4ri 296 . 2 ((𝑥𝐴𝐵) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑦 = 𝐵)
322, 31bitr4i 270 1 (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1656   = wceq 1658  wex 1880  wcel 2166  ∃*wmo 2604  ∃!weu 2640  {cab 2812  wnfc 2957  wral 3118  Vcvv 3415  {copab 4936  cmpt 4953  dom cdm 5343  Fun wfun 6118   Fn wfn 6119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pr 5128
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ral 3123  df-rab 3127  df-v 3417  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-fun 6126  df-fn 6127
This theorem is referenced by:  fnmptf  6250  mptfnd  40253
  Copyright terms: Public domain W3C validator