MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunsuc Structured version   Visualization version   GIF version

Theorem iunsuc 6272
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
iunsuc.1 𝐴 ∈ V
iunsuc.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunsuc 𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunsuc
StepHypRef Expression
1 df-suc 6196 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
2 iuneq1 4932 . . 3 (suc 𝐴 = (𝐴 ∪ {𝐴}) → 𝑥 ∈ suc 𝐴𝐵 = 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵)
31, 2ax-mp 5 . 2 𝑥 ∈ suc 𝐴𝐵 = 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵
4 iunxun 5013 . 2 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 = ( 𝑥𝐴 𝐵 𝑥 ∈ {𝐴}𝐵)
5 iunsuc.1 . . . 4 𝐴 ∈ V
6 iunsuc.2 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
75, 6iunxsn 5010 . . 3 𝑥 ∈ {𝐴}𝐵 = 𝐶
87uneq2i 4140 . 2 ( 𝑥𝐴 𝐵 𝑥 ∈ {𝐴}𝐵) = ( 𝑥𝐴 𝐵𝐶)
93, 4, 83eqtri 2853 1 𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  Vcvv 3500  cun 3938  {csn 4564   ciun 4917  suc csuc 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-v 3502  df-sbc 3777  df-un 3945  df-in 3947  df-ss 3956  df-sn 4565  df-iun 4919  df-suc 6196
This theorem is referenced by:  pwsdompw  9620
  Copyright terms: Public domain W3C validator