![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunsuc | Structured version Visualization version GIF version |
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
iunsuc.1 | ⊢ 𝐴 ∈ V |
iunsuc.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunsuc | ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 5969 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | iuneq1 4754 | . . 3 ⊢ (suc 𝐴 = (𝐴 ∪ {𝐴}) → ∪ 𝑥 ∈ suc 𝐴𝐵 = ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 |
4 | iunxun 4826 | . 2 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝐴}𝐵) | |
5 | iunsuc.1 | . . . 4 ⊢ 𝐴 ∈ V | |
6 | iunsuc.2 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
7 | 5, 6 | iunxsn 4823 | . . 3 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
8 | 7 | uneq2i 3991 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝐴}𝐵) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
9 | 3, 4, 8 | 3eqtri 2853 | 1 ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 Vcvv 3414 ∪ cun 3796 {csn 4397 ∪ ciun 4740 suc csuc 5965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-v 3416 df-sbc 3663 df-un 3803 df-in 3805 df-ss 3812 df-sn 4398 df-iun 4742 df-suc 5969 |
This theorem is referenced by: pwsdompw 9341 |
Copyright terms: Public domain | W3C validator |