Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunsuc | Structured version Visualization version GIF version |
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
iunsuc.1 | ⊢ 𝐴 ∈ V |
iunsuc.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunsuc | ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6272 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | iuneq1 4940 | . . 3 ⊢ (suc 𝐴 = (𝐴 ∪ {𝐴}) → ∪ 𝑥 ∈ suc 𝐴𝐵 = ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 |
4 | iunxun 5023 | . 2 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝐴}𝐵) | |
5 | iunsuc.1 | . . . 4 ⊢ 𝐴 ∈ V | |
6 | iunsuc.2 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
7 | 5, 6 | iunxsn 5020 | . . 3 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
8 | 7 | uneq2i 4094 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝐴}𝐵) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
9 | 3, 4, 8 | 3eqtri 2770 | 1 ⊢ ∪ 𝑥 ∈ suc 𝐴𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 {csn 4561 ∪ ciun 4924 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-iun 4926 df-suc 6272 |
This theorem is referenced by: pwsdompw 9960 |
Copyright terms: Public domain | W3C validator |