MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunsuc Structured version   Visualization version   GIF version

Theorem iunsuc 6255
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
iunsuc.1 𝐴 ∈ V
iunsuc.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunsuc 𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunsuc
StepHypRef Expression
1 df-suc 6179 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
2 iuneq1 4898 . . 3 (suc 𝐴 = (𝐴 ∪ {𝐴}) → 𝑥 ∈ suc 𝐴𝐵 = 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵)
31, 2ax-mp 5 . 2 𝑥 ∈ suc 𝐴𝐵 = 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵
4 iunxun 4980 . 2 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 = ( 𝑥𝐴 𝐵 𝑥 ∈ {𝐴}𝐵)
5 iunsuc.1 . . . 4 𝐴 ∈ V
6 iunsuc.2 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
75, 6iunxsn 4977 . . 3 𝑥 ∈ {𝐴}𝐵 = 𝐶
87uneq2i 4051 . 2 ( 𝑥𝐴 𝐵 𝑥 ∈ {𝐴}𝐵) = ( 𝑥𝐴 𝐵𝐶)
93, 4, 83eqtri 2765 1 𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  Vcvv 3398  cun 3842  {csn 4517   ciun 4882  suc csuc 6175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-v 3400  df-un 3849  df-in 3851  df-ss 3861  df-sn 4518  df-iun 4884  df-suc 6179
This theorem is referenced by:  pwsdompw  9705
  Copyright terms: Public domain W3C validator