|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eqoreldif | Structured version Visualization version GIF version | ||
| Description: An element of a set is either equal to another element of the set or a member of the difference of the set and the singleton containing the other element. (Contributed by AV, 25-Aug-2020.) (Proof shortened by JJ, 23-Jul-2021.) | 
| Ref | Expression | 
|---|---|
| eqoreldif | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ 𝐶 ↔ (𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵})))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
| 2 | elsni 4643 | . . . . . . 7 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 3 | 2 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐵 → ¬ 𝐴 ∈ {𝐵}) | 
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ∈ {𝐵}) | 
| 5 | 1, 4 | eldifd 3962 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ (𝐶 ∖ {𝐵})) | 
| 6 | 5 | ex 412 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (¬ 𝐴 = 𝐵 → 𝐴 ∈ (𝐶 ∖ {𝐵}))) | 
| 7 | 6 | orrd 864 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵}))) | 
| 8 | eleq1a 2836 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 = 𝐵 → 𝐴 ∈ 𝐶)) | |
| 9 | eldifi 4131 | . . . 4 ⊢ (𝐴 ∈ (𝐶 ∖ {𝐵}) → 𝐴 ∈ 𝐶) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ (𝐶 ∖ {𝐵}) → 𝐴 ∈ 𝐶)) | 
| 11 | 8, 10 | jaod 860 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵})) → 𝐴 ∈ 𝐶)) | 
| 12 | 7, 11 | impbid2 226 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ 𝐶 ↔ (𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵})))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 {csn 4626 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-dif 3954 df-sn 4627 | 
| This theorem is referenced by: lcmfunsnlem2 16677 | 
| Copyright terms: Public domain | W3C validator |