![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqoreldif | Structured version Visualization version GIF version |
Description: An element of a set is either equal to another element of the set or a member of the difference of the set and the singleton containing the other element. (Contributed by AV, 25-Aug-2020.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
eqoreldif | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ 𝐶 ↔ (𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
2 | elsni 4644 | . . . . . . 7 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
3 | 2 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
4 | 3 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ∈ {𝐵}) |
5 | 1, 4 | eldifd 3958 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ (𝐶 ∖ {𝐵})) |
6 | 5 | ex 413 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (¬ 𝐴 = 𝐵 → 𝐴 ∈ (𝐶 ∖ {𝐵}))) |
7 | 6 | orrd 861 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵}))) |
8 | eleq1a 2828 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 = 𝐵 → 𝐴 ∈ 𝐶)) | |
9 | eldifi 4125 | . . . 4 ⊢ (𝐴 ∈ (𝐶 ∖ {𝐵}) → 𝐴 ∈ 𝐶) | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ (𝐶 ∖ {𝐵}) → 𝐴 ∈ 𝐶)) |
11 | 8, 10 | jaod 857 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵})) → 𝐴 ∈ 𝐶)) |
12 | 7, 11 | impbid2 225 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ 𝐶 ↔ (𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵})))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∖ cdif 3944 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-sn 4628 |
This theorem is referenced by: lcmfunsnlem2 16573 |
Copyright terms: Public domain | W3C validator |