MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwunsn Structured version   Visualization version   GIF version

Theorem elpwunsn 4684
Description: Membership in an extension of a power class. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
elpwunsn (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) → 𝐶𝐴)

Proof of Theorem elpwunsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3961 . 2 (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) ↔ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵))
2 elpwg 4603 . . . . . . 7 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
3 dfss3 3972 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
42, 3bitrdi 287 . . . . . 6 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝐴 ∈ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵))
54notbid 318 . . . . 5 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (¬ 𝐴 ∈ 𝒫 𝐵 ↔ ¬ ∀𝑥𝐴 𝑥𝐵))
65biimpa 476 . . . 4 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → ¬ ∀𝑥𝐴 𝑥𝐵)
7 rexnal 3100 . . . 4 (∃𝑥𝐴 ¬ 𝑥𝐵 ↔ ¬ ∀𝑥𝐴 𝑥𝐵)
86, 7sylibr 234 . . 3 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → ∃𝑥𝐴 ¬ 𝑥𝐵)
9 elpwi 4607 . . . . . . . . . 10 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → 𝐴 ⊆ (𝐵 ∪ {𝐶}))
10 ssel 3977 . . . . . . . . . 10 (𝐴 ⊆ (𝐵 ∪ {𝐶}) → (𝑥𝐴𝑥 ∈ (𝐵 ∪ {𝐶})))
11 elun 4153 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑥𝐵𝑥 ∈ {𝐶}))
12 elsni 4643 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐶} → 𝑥 = 𝐶)
1312orim2i 911 . . . . . . . . . . . . . 14 ((𝑥𝐵𝑥 ∈ {𝐶}) → (𝑥𝐵𝑥 = 𝐶))
1413ord 865 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥 ∈ {𝐶}) → (¬ 𝑥𝐵𝑥 = 𝐶))
1511, 14sylbi 217 . . . . . . . . . . . 12 (𝑥 ∈ (𝐵 ∪ {𝐶}) → (¬ 𝑥𝐵𝑥 = 𝐶))
1615imim2i 16 . . . . . . . . . . 11 ((𝑥𝐴𝑥 ∈ (𝐵 ∪ {𝐶})) → (𝑥𝐴 → (¬ 𝑥𝐵𝑥 = 𝐶)))
1716impd 410 . . . . . . . . . 10 ((𝑥𝐴𝑥 ∈ (𝐵 ∪ {𝐶})) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥 = 𝐶))
189, 10, 173syl 18 . . . . . . . . 9 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥 = 𝐶))
19 eleq1 2829 . . . . . . . . . 10 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
2019biimpd 229 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
2118, 20syl6 35 . . . . . . . 8 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑥𝐴𝐶𝐴)))
2221expd 415 . . . . . . 7 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥𝐴 → (¬ 𝑥𝐵 → (𝑥𝐴𝐶𝐴))))
2322com4r 94 . . . . . 6 (𝑥𝐴 → (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥𝐴 → (¬ 𝑥𝐵𝐶𝐴))))
2423pm2.43b 55 . . . . 5 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥𝐴 → (¬ 𝑥𝐵𝐶𝐴)))
2524rexlimdv 3153 . . . 4 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (∃𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴))
2625imp 406 . . 3 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ∃𝑥𝐴 ¬ 𝑥𝐵) → 𝐶𝐴)
278, 26syldan 591 . 2 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → 𝐶𝐴)
281, 27sylbi 217 1 (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) → 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cdif 3948  cun 3949  wss 3951  𝒫 cpw 4600  {csn 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-pw 4602  df-sn 4627
This theorem is referenced by:  pwfilem  9356  incexclem  15872  ramub1lem1  17064  ptcmplem5  24064  onsucsuccmpi  36444
  Copyright terms: Public domain W3C validator