MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwunsn Structured version   Visualization version   GIF version

Theorem elpwunsn 4687
Description: Membership in an extension of a power class. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
elpwunsn (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) → 𝐶𝐴)

Proof of Theorem elpwunsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3958 . 2 (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) ↔ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵))
2 elpwg 4605 . . . . . . 7 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
3 dfss3 3970 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
42, 3bitrdi 286 . . . . . 6 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝐴 ∈ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵))
54notbid 317 . . . . 5 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (¬ 𝐴 ∈ 𝒫 𝐵 ↔ ¬ ∀𝑥𝐴 𝑥𝐵))
65biimpa 477 . . . 4 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → ¬ ∀𝑥𝐴 𝑥𝐵)
7 rexnal 3100 . . . 4 (∃𝑥𝐴 ¬ 𝑥𝐵 ↔ ¬ ∀𝑥𝐴 𝑥𝐵)
86, 7sylibr 233 . . 3 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → ∃𝑥𝐴 ¬ 𝑥𝐵)
9 elpwi 4609 . . . . . . . . . 10 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → 𝐴 ⊆ (𝐵 ∪ {𝐶}))
10 ssel 3975 . . . . . . . . . 10 (𝐴 ⊆ (𝐵 ∪ {𝐶}) → (𝑥𝐴𝑥 ∈ (𝐵 ∪ {𝐶})))
11 elun 4148 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑥𝐵𝑥 ∈ {𝐶}))
12 elsni 4645 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐶} → 𝑥 = 𝐶)
1312orim2i 909 . . . . . . . . . . . . . 14 ((𝑥𝐵𝑥 ∈ {𝐶}) → (𝑥𝐵𝑥 = 𝐶))
1413ord 862 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥 ∈ {𝐶}) → (¬ 𝑥𝐵𝑥 = 𝐶))
1511, 14sylbi 216 . . . . . . . . . . . 12 (𝑥 ∈ (𝐵 ∪ {𝐶}) → (¬ 𝑥𝐵𝑥 = 𝐶))
1615imim2i 16 . . . . . . . . . . 11 ((𝑥𝐴𝑥 ∈ (𝐵 ∪ {𝐶})) → (𝑥𝐴 → (¬ 𝑥𝐵𝑥 = 𝐶)))
1716impd 411 . . . . . . . . . 10 ((𝑥𝐴𝑥 ∈ (𝐵 ∪ {𝐶})) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥 = 𝐶))
189, 10, 173syl 18 . . . . . . . . 9 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥 = 𝐶))
19 eleq1 2821 . . . . . . . . . 10 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
2019biimpd 228 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
2118, 20syl6 35 . . . . . . . 8 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑥𝐴𝐶𝐴)))
2221expd 416 . . . . . . 7 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥𝐴 → (¬ 𝑥𝐵 → (𝑥𝐴𝐶𝐴))))
2322com4r 94 . . . . . 6 (𝑥𝐴 → (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥𝐴 → (¬ 𝑥𝐵𝐶𝐴))))
2423pm2.43b 55 . . . . 5 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥𝐴 → (¬ 𝑥𝐵𝐶𝐴)))
2524rexlimdv 3153 . . . 4 (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (∃𝑥𝐴 ¬ 𝑥𝐵𝐶𝐴))
2625imp 407 . . 3 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ∃𝑥𝐴 ¬ 𝑥𝐵) → 𝐶𝐴)
278, 26syldan 591 . 2 ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → 𝐶𝐴)
281, 27sylbi 216 1 (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) → 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3061  wrex 3070  cdif 3945  cun 3946  wss 3948  𝒫 cpw 4602  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pw 4604  df-sn 4629
This theorem is referenced by:  pwfilem  9176  pwfilemOLD  9345  incexclem  15781  ramub1lem1  16958  ptcmplem5  23559  onsucsuccmpi  35323
  Copyright terms: Public domain W3C validator