| Step | Hyp | Ref
| Expression |
| 1 | | eldif 3961 |
. 2
⊢ (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) ↔ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵)) |
| 2 | | elpwg 4603 |
. . . . . . 7
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
| 3 | | dfss3 3972 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 4 | 2, 3 | bitrdi 287 |
. . . . . 6
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝐴 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵)) |
| 5 | 4 | notbid 318 |
. . . . 5
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (¬ 𝐴 ∈ 𝒫 𝐵 ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵)) |
| 6 | 5 | biimpa 476 |
. . . 4
⊢ ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → ¬ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 7 | | rexnal 3100 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 8 | 6, 7 | sylibr 234 |
. . 3
⊢ ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
| 9 | | elpwi 4607 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → 𝐴 ⊆ (𝐵 ∪ {𝐶})) |
| 10 | | ssel 3977 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ (𝐵 ∪ {𝐶}) → (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ {𝐶}))) |
| 11 | | elun 4153 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ {𝐶})) |
| 12 | | elsni 4643 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝐶} → 𝑥 = 𝐶) |
| 13 | 12 | orim2i 911 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ {𝐶}) → (𝑥 ∈ 𝐵 ∨ 𝑥 = 𝐶)) |
| 14 | 13 | ord 865 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ {𝐶}) → (¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶)) |
| 15 | 11, 14 | sylbi 217 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐵 ∪ {𝐶}) → (¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶)) |
| 16 | 15 | imim2i 16 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ {𝐶})) → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶))) |
| 17 | 16 | impd 410 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ {𝐶})) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 = 𝐶)) |
| 18 | 9, 10, 17 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 = 𝐶)) |
| 19 | | eleq1 2829 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
| 20 | 19 | biimpd 229 |
. . . . . . . . 9
⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴)) |
| 21 | 18, 20 | syl6 35 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴))) |
| 22 | 21 | expd 415 |
. . . . . . 7
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴)))) |
| 23 | 22 | com4r 94 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴)))) |
| 24 | 23 | pm2.43b 55 |
. . . . 5
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴))) |
| 25 | 24 | rexlimdv 3153 |
. . . 4
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴)) |
| 26 | 25 | imp 406 |
. . 3
⊢ ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
| 27 | 8, 26 | syldan 591 |
. 2
⊢ ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → 𝐶 ∈ 𝐴) |
| 28 | 1, 27 | sylbi 217 |
1
⊢ (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) → 𝐶 ∈ 𝐴) |