Step | Hyp | Ref
| Expression |
1 | | eldif 3897 |
. 2
⊢ (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) ↔ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵)) |
2 | | elpwg 4536 |
. . . . . . 7
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
3 | | dfss3 3909 |
. . . . . . 7
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
4 | 2, 3 | bitrdi 287 |
. . . . . 6
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝐴 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵)) |
5 | 4 | notbid 318 |
. . . . 5
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (¬ 𝐴 ∈ 𝒫 𝐵 ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵)) |
6 | 5 | biimpa 477 |
. . . 4
⊢ ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → ¬ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
7 | | rexnal 3169 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 ¬ 𝑥 ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
8 | 6, 7 | sylibr 233 |
. . 3
⊢ ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
9 | | elpwi 4542 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → 𝐴 ⊆ (𝐵 ∪ {𝐶})) |
10 | | ssel 3914 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ (𝐵 ∪ {𝐶}) → (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ {𝐶}))) |
11 | | elun 4083 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐵 ∪ {𝐶}) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ {𝐶})) |
12 | | elsni 4578 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {𝐶} → 𝑥 = 𝐶) |
13 | 12 | orim2i 908 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ {𝐶}) → (𝑥 ∈ 𝐵 ∨ 𝑥 = 𝐶)) |
14 | 13 | ord 861 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐵 ∨ 𝑥 ∈ {𝐶}) → (¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶)) |
15 | 11, 14 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝐵 ∪ {𝐶}) → (¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶)) |
16 | 15 | imim2i 16 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ {𝐶})) → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐶))) |
17 | 16 | impd 411 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐵 ∪ {𝐶})) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 = 𝐶)) |
18 | 9, 10, 17 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → 𝑥 = 𝐶)) |
19 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
20 | 19 | biimpd 228 |
. . . . . . . . 9
⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴)) |
21 | 18, 20 | syl6 35 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴))) |
22 | 21 | expd 416 |
. . . . . . 7
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐴)))) |
23 | 22 | com4r 94 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴)))) |
24 | 23 | pm2.43b 55 |
. . . . 5
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴))) |
25 | 24 | rexlimdv 3212 |
. . . 4
⊢ (𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) → (∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 → 𝐶 ∈ 𝐴)) |
26 | 25 | imp 407 |
. . 3
⊢ ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐴) |
27 | 8, 26 | syldan 591 |
. 2
⊢ ((𝐴 ∈ 𝒫 (𝐵 ∪ {𝐶}) ∧ ¬ 𝐴 ∈ 𝒫 𝐵) → 𝐶 ∈ 𝐴) |
28 | 1, 27 | sylbi 216 |
1
⊢ (𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) → 𝐶 ∈ 𝐴) |