| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifd | Structured version Visualization version GIF version | ||
| Description: If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3960. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| eldifd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eldifd.2 | ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eldifd | ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eldifd.2 | . 2 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐶) | |
| 3 | eldif 3960 | . 2 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ 𝐶)) |
| Copyright terms: Public domain | W3C validator |