MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2d2 Structured version   Visualization version   GIF version

Theorem dprd2d2 19562
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d2.1 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
dprd2d2.2 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))
dprd2d2.3 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
Assertion
Ref Expression
dprd2d2 (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
Distinct variable groups:   𝑖,𝑗,𝐺   𝑖,𝐼,𝑗   𝑗,𝐽   𝜑,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖)

Proof of Theorem dprd2d2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5598 . . . . . 6 Rel ({𝑖} × 𝐽)
21rgenw 3075 . . . . 5 𝑖𝐼 Rel ({𝑖} × 𝐽)
3 reliun 5715 . . . . 5 (Rel 𝑖𝐼 ({𝑖} × 𝐽) ↔ ∀𝑖𝐼 Rel ({𝑖} × 𝐽))
42, 3mpbir 230 . . . 4 Rel 𝑖𝐼 ({𝑖} × 𝐽)
54a1i 11 . . 3 (𝜑 → Rel 𝑖𝐼 ({𝑖} × 𝐽))
6 dprd2d2.1 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
76ralrimivva 3114 . . . 4 (𝜑 → ∀𝑖𝐼𝑗𝐽 𝑆 ∈ (SubGrp‘𝐺))
8 eqid 2738 . . . . 5 (𝑖𝐼, 𝑗𝐽𝑆) = (𝑖𝐼, 𝑗𝐽𝑆)
98fmpox 7880 . . . 4 (∀𝑖𝐼𝑗𝐽 𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑖𝐼, 𝑗𝐽𝑆): 𝑖𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺))
107, 9sylib 217 . . 3 (𝜑 → (𝑖𝐼, 𝑗𝐽𝑆): 𝑖𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺))
11 dmiun 5811 . . . 4 dom 𝑖𝐼 ({𝑖} × 𝐽) = 𝑖𝐼 dom ({𝑖} × 𝐽)
12 dmxpss 6063 . . . . . . 7 dom ({𝑖} × 𝐽) ⊆ {𝑖}
13 simpr 484 . . . . . . . 8 ((𝜑𝑖𝐼) → 𝑖𝐼)
1413snssd 4739 . . . . . . 7 ((𝜑𝑖𝐼) → {𝑖} ⊆ 𝐼)
1512, 14sstrid 3928 . . . . . 6 ((𝜑𝑖𝐼) → dom ({𝑖} × 𝐽) ⊆ 𝐼)
1615ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
17 iunss 4971 . . . . 5 ( 𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼 ↔ ∀𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
1816, 17sylibr 233 . . . 4 (𝜑 𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
1911, 18eqsstrid 3965 . . 3 (𝜑 → dom 𝑖𝐼 ({𝑖} × 𝐽) ⊆ 𝐼)
20 dprd2d2.2 . . . . . . 7 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))
21 simprl 767 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑖𝐼)
22 simprr 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑗𝐽)
238ovmpt4g 7398 . . . . . . . . . 10 ((𝑖𝐼𝑗𝐽𝑆 ∈ (SubGrp‘𝐺)) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2421, 22, 6, 23syl3anc 1369 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2524anassrs 467 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ 𝑗𝐽) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2625mpteq2dva 5170 . . . . . . 7 ((𝜑𝑖𝐼) → (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑗𝐽𝑆))
2720, 26breqtrrd 5098 . . . . . 6 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
2827ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑖𝐼 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
29 nfcv 2906 . . . . . . 7 𝑖𝐺
30 nfcv 2906 . . . . . . 7 𝑖dom DProd
31 nfcsb1v 3853 . . . . . . . 8 𝑖𝑥 / 𝑖𝐽
32 nfcv 2906 . . . . . . . . 9 𝑖𝑥
33 nfmpo1 7333 . . . . . . . . 9 𝑖(𝑖𝐼, 𝑗𝐽𝑆)
34 nfcv 2906 . . . . . . . . 9 𝑖𝑗
3532, 33, 34nfov 7285 . . . . . . . 8 𝑖(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)
3631, 35nfmpt 5177 . . . . . . 7 𝑖(𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
3729, 30, 36nfbr 5117 . . . . . 6 𝑖 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
38 csbeq1a 3842 . . . . . . . 8 (𝑖 = 𝑥𝐽 = 𝑥 / 𝑖𝐽)
39 oveq1 7262 . . . . . . . 8 (𝑖 = 𝑥 → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
4038, 39mpteq12dv 5161 . . . . . . 7 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
4140breq2d 5082 . . . . . 6 (𝑖 = 𝑥 → (𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) ↔ 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
4237, 41rspc 3539 . . . . 5 (𝑥𝐼 → (∀𝑖𝐼 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) → 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
4328, 42mpan9 506 . . . 4 ((𝜑𝑥𝐼) → 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
44 nfcv 2906 . . . . . 6 𝑦(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)
45 nfcv 2906 . . . . . . 7 𝑗𝑥
46 nfmpo2 7334 . . . . . . 7 𝑗(𝑖𝐼, 𝑗𝐽𝑆)
47 nfcv 2906 . . . . . . 7 𝑗𝑦
4845, 46, 47nfov 7285 . . . . . 6 𝑗(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)
49 oveq2 7263 . . . . . 6 (𝑗 = 𝑦 → (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))
5044, 48, 49cbvmpt 5181 . . . . 5 (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑦𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))
51 nfv 1918 . . . . . . . . . . . . 13 𝑖 𝑗 = 𝑧
5231nfcri 2893 . . . . . . . . . . . . 13 𝑖 𝑗𝑥 / 𝑖𝐽
5351, 52nfan 1903 . . . . . . . . . . . 12 𝑖(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽)
5438eleq2d 2824 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → (𝑗𝐽𝑗𝑥 / 𝑖𝐽))
5554anbi2d 628 . . . . . . . . . . . 12 (𝑖 = 𝑥 → ((𝑗 = 𝑧𝑗𝐽) ↔ (𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽)))
5653, 55equsexv 2263 . . . . . . . . . . 11 (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ (𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽))
57 simprl 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑖 = 𝑥)
58 simplr 765 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑥𝐼)
5957, 58eqeltrd 2839 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑖𝐼)
6059biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → (𝑗𝐽 ↔ (𝑖𝐼𝑗𝐽)))
6160pm5.32da 578 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (((𝑖 = 𝑥𝑗 = 𝑧) ∧ 𝑗𝐽) ↔ ((𝑖 = 𝑥𝑗 = 𝑧) ∧ (𝑖𝐼𝑗𝐽))))
62 anass 468 . . . . . . . . . . . . 13 (((𝑖 = 𝑥𝑗 = 𝑧) ∧ 𝑗𝐽) ↔ (𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)))
63 eqcom 2745 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ↔ ⟨𝑖, 𝑗⟩ = ⟨𝑥, 𝑧⟩)
64 vex 3426 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
65 vex 3426 . . . . . . . . . . . . . . . 16 𝑗 ∈ V
6664, 65opth 5385 . . . . . . . . . . . . . . 15 (⟨𝑖, 𝑗⟩ = ⟨𝑥, 𝑧⟩ ↔ (𝑖 = 𝑥𝑗 = 𝑧))
6763, 66bitr2i 275 . . . . . . . . . . . . . 14 ((𝑖 = 𝑥𝑗 = 𝑧) ↔ ⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩)
6867anbi1i 623 . . . . . . . . . . . . 13 (((𝑖 = 𝑥𝑗 = 𝑧) ∧ (𝑖𝐼𝑗𝐽)) ↔ (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
6961, 62, 683bitr3g 312 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → ((𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7069exbidv 1925 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ ∃𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7156, 70bitr3id 284 . . . . . . . . . 10 ((𝜑𝑥𝐼) → ((𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ ∃𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7271exbidv 1925 . . . . . . . . 9 ((𝜑𝑥𝐼) → (∃𝑗(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ ∃𝑗𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
73 vex 3426 . . . . . . . . . 10 𝑧 ∈ V
74 eleq1w 2821 . . . . . . . . . 10 (𝑗 = 𝑧 → (𝑗𝑥 / 𝑖𝐽𝑧𝑥 / 𝑖𝐽))
7573, 74ceqsexv 3469 . . . . . . . . 9 (∃𝑗(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ 𝑧𝑥 / 𝑖𝐽)
76 excom 2164 . . . . . . . . 9 (∃𝑗𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
7772, 75, 763bitr3g 312 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑧𝑥 / 𝑖𝐽 ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
78 elrelimasn 5982 . . . . . . . . . 10 (Rel 𝑖𝐼 ({𝑖} × 𝐽) → (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧))
794, 78ax-mp 5 . . . . . . . . 9 (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧)
80 df-br 5071 . . . . . . . . 9 (𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑖𝐼 ({𝑖} × 𝐽))
81 eliunxp 5735 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ 𝑖𝐼 ({𝑖} × 𝐽) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
8279, 80, 813bitri 296 . . . . . . . 8 (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
8377, 82bitr4di 288 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑧𝑥 / 𝑖𝐽𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥})))
8483eqrdv 2736 . . . . . 6 ((𝜑𝑥𝐼) → 𝑥 / 𝑖𝐽 = ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}))
8584mpteq1d 5165 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)) = (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
8650, 85eqtrid 2790 . . . 4 ((𝜑𝑥𝐼) → (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
8743, 86breqtrd 5096 . . 3 ((𝜑𝑥𝐼) → 𝐺dom DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
88 dprd2d2.3 . . . . 5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
8926oveq2d 7271 . . . . . 6 ((𝜑𝑖𝐼) → (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑗𝐽𝑆)))
9089mpteq2dva 5170 . . . . 5 (𝜑 → (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
9188, 90breqtrrd 5098 . . . 4 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))))
92 nfcv 2906 . . . . . 6 𝑥(𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
93 nfcv 2906 . . . . . . 7 𝑖 DProd
9429, 93, 36nfov 7285 . . . . . 6 𝑖(𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
9540oveq2d 7271 . . . . . 6 (𝑖 = 𝑥 → (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
9692, 94, 95cbvmpt 5181 . . . . 5 (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
9786oveq2d 7271 . . . . . 6 ((𝜑𝑥𝐼) → (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))
9897mpteq2dva 5170 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
9996, 98eqtrid 2790 . . . 4 (𝜑 → (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
10091, 99breqtrd 5096 . . 3 (𝜑𝐺dom DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
101 eqid 2738 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
1025, 10, 19, 87, 100, 101dprd2da 19560 . 2 (𝜑𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆))
1035, 10, 19, 87, 100, 101dprd2db 19561 . . 3 (𝜑 → (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))))
10499, 90eqtr3d 2780 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
105104oveq2d 7271 . . 3 (𝜑 → (𝐺 DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆)))))
106103, 105eqtrd 2778 . 2 (𝜑 → (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆)))))
107102, 106jca 511 1 (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  csb 3828  wss 3883  {csn 4558  cop 4564   ciun 4921   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  cima 5583  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  mrClscmrc 17209  SubGrpcsubg 18664   DProd cdprd 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-oppg 18865  df-lsm 19156  df-cmn 19303  df-dprd 19513
This theorem is referenced by:  ablfaclem2  19604
  Copyright terms: Public domain W3C validator