MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2d2 Structured version   Visualization version   GIF version

Theorem dprd2d2 20065
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d2.1 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
dprd2d2.2 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))
dprd2d2.3 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
Assertion
Ref Expression
dprd2d2 (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
Distinct variable groups:   𝑖,𝑗,𝐺   𝑖,𝐼,𝑗   𝑗,𝐽   𝜑,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖)

Proof of Theorem dprd2d2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5702 . . . . . 6 Rel ({𝑖} × 𝐽)
21rgenw 3064 . . . . 5 𝑖𝐼 Rel ({𝑖} × 𝐽)
3 reliun 5825 . . . . 5 (Rel 𝑖𝐼 ({𝑖} × 𝐽) ↔ ∀𝑖𝐼 Rel ({𝑖} × 𝐽))
42, 3mpbir 231 . . . 4 Rel 𝑖𝐼 ({𝑖} × 𝐽)
54a1i 11 . . 3 (𝜑 → Rel 𝑖𝐼 ({𝑖} × 𝐽))
6 dprd2d2.1 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
76ralrimivva 3201 . . . 4 (𝜑 → ∀𝑖𝐼𝑗𝐽 𝑆 ∈ (SubGrp‘𝐺))
8 eqid 2736 . . . . 5 (𝑖𝐼, 𝑗𝐽𝑆) = (𝑖𝐼, 𝑗𝐽𝑆)
98fmpox 8093 . . . 4 (∀𝑖𝐼𝑗𝐽 𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑖𝐼, 𝑗𝐽𝑆): 𝑖𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺))
107, 9sylib 218 . . 3 (𝜑 → (𝑖𝐼, 𝑗𝐽𝑆): 𝑖𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺))
11 dmiun 5923 . . . 4 dom 𝑖𝐼 ({𝑖} × 𝐽) = 𝑖𝐼 dom ({𝑖} × 𝐽)
12 dmxpss 6190 . . . . . . 7 dom ({𝑖} × 𝐽) ⊆ {𝑖}
13 simpr 484 . . . . . . . 8 ((𝜑𝑖𝐼) → 𝑖𝐼)
1413snssd 4808 . . . . . . 7 ((𝜑𝑖𝐼) → {𝑖} ⊆ 𝐼)
1512, 14sstrid 3994 . . . . . 6 ((𝜑𝑖𝐼) → dom ({𝑖} × 𝐽) ⊆ 𝐼)
1615ralrimiva 3145 . . . . 5 (𝜑 → ∀𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
17 iunss 5044 . . . . 5 ( 𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼 ↔ ∀𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
1816, 17sylibr 234 . . . 4 (𝜑 𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
1911, 18eqsstrid 4021 . . 3 (𝜑 → dom 𝑖𝐼 ({𝑖} × 𝐽) ⊆ 𝐼)
20 dprd2d2.2 . . . . . . 7 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))
21 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑖𝐼)
22 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑗𝐽)
238ovmpt4g 7581 . . . . . . . . . 10 ((𝑖𝐼𝑗𝐽𝑆 ∈ (SubGrp‘𝐺)) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2421, 22, 6, 23syl3anc 1372 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2524anassrs 467 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ 𝑗𝐽) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2625mpteq2dva 5241 . . . . . . 7 ((𝜑𝑖𝐼) → (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑗𝐽𝑆))
2720, 26breqtrrd 5170 . . . . . 6 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
2827ralrimiva 3145 . . . . 5 (𝜑 → ∀𝑖𝐼 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
29 nfcv 2904 . . . . . . 7 𝑖𝐺
30 nfcv 2904 . . . . . . 7 𝑖dom DProd
31 nfcsb1v 3922 . . . . . . . 8 𝑖𝑥 / 𝑖𝐽
32 nfcv 2904 . . . . . . . . 9 𝑖𝑥
33 nfmpo1 7514 . . . . . . . . 9 𝑖(𝑖𝐼, 𝑗𝐽𝑆)
34 nfcv 2904 . . . . . . . . 9 𝑖𝑗
3532, 33, 34nfov 7462 . . . . . . . 8 𝑖(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)
3631, 35nfmpt 5248 . . . . . . 7 𝑖(𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
3729, 30, 36nfbr 5189 . . . . . 6 𝑖 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
38 csbeq1a 3912 . . . . . . . 8 (𝑖 = 𝑥𝐽 = 𝑥 / 𝑖𝐽)
39 oveq1 7439 . . . . . . . 8 (𝑖 = 𝑥 → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
4038, 39mpteq12dv 5232 . . . . . . 7 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
4140breq2d 5154 . . . . . 6 (𝑖 = 𝑥 → (𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) ↔ 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
4237, 41rspc 3609 . . . . 5 (𝑥𝐼 → (∀𝑖𝐼 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) → 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
4328, 42mpan9 506 . . . 4 ((𝜑𝑥𝐼) → 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
44 nfcv 2904 . . . . . 6 𝑦(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)
45 nfcv 2904 . . . . . . 7 𝑗𝑥
46 nfmpo2 7515 . . . . . . 7 𝑗(𝑖𝐼, 𝑗𝐽𝑆)
47 nfcv 2904 . . . . . . 7 𝑗𝑦
4845, 46, 47nfov 7462 . . . . . 6 𝑗(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)
49 oveq2 7440 . . . . . 6 (𝑗 = 𝑦 → (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))
5044, 48, 49cbvmpt 5252 . . . . 5 (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑦𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))
51 nfv 1913 . . . . . . . . . . . . 13 𝑖 𝑗 = 𝑧
5231nfcri 2896 . . . . . . . . . . . . 13 𝑖 𝑗𝑥 / 𝑖𝐽
5351, 52nfan 1898 . . . . . . . . . . . 12 𝑖(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽)
5438eleq2d 2826 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → (𝑗𝐽𝑗𝑥 / 𝑖𝐽))
5554anbi2d 630 . . . . . . . . . . . 12 (𝑖 = 𝑥 → ((𝑗 = 𝑧𝑗𝐽) ↔ (𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽)))
5653, 55equsexv 2267 . . . . . . . . . . 11 (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ (𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽))
57 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑖 = 𝑥)
58 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑥𝐼)
5957, 58eqeltrd 2840 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑖𝐼)
6059biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → (𝑗𝐽 ↔ (𝑖𝐼𝑗𝐽)))
6160pm5.32da 579 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (((𝑖 = 𝑥𝑗 = 𝑧) ∧ 𝑗𝐽) ↔ ((𝑖 = 𝑥𝑗 = 𝑧) ∧ (𝑖𝐼𝑗𝐽))))
62 anass 468 . . . . . . . . . . . . 13 (((𝑖 = 𝑥𝑗 = 𝑧) ∧ 𝑗𝐽) ↔ (𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)))
63 eqcom 2743 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ↔ ⟨𝑖, 𝑗⟩ = ⟨𝑥, 𝑧⟩)
64 vex 3483 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
65 vex 3483 . . . . . . . . . . . . . . . 16 𝑗 ∈ V
6664, 65opth 5480 . . . . . . . . . . . . . . 15 (⟨𝑖, 𝑗⟩ = ⟨𝑥, 𝑧⟩ ↔ (𝑖 = 𝑥𝑗 = 𝑧))
6763, 66bitr2i 276 . . . . . . . . . . . . . 14 ((𝑖 = 𝑥𝑗 = 𝑧) ↔ ⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩)
6867anbi1i 624 . . . . . . . . . . . . 13 (((𝑖 = 𝑥𝑗 = 𝑧) ∧ (𝑖𝐼𝑗𝐽)) ↔ (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
6961, 62, 683bitr3g 313 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → ((𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7069exbidv 1920 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ ∃𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7156, 70bitr3id 285 . . . . . . . . . 10 ((𝜑𝑥𝐼) → ((𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ ∃𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7271exbidv 1920 . . . . . . . . 9 ((𝜑𝑥𝐼) → (∃𝑗(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ ∃𝑗𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
73 vex 3483 . . . . . . . . . 10 𝑧 ∈ V
74 eleq1w 2823 . . . . . . . . . 10 (𝑗 = 𝑧 → (𝑗𝑥 / 𝑖𝐽𝑧𝑥 / 𝑖𝐽))
7573, 74ceqsexv 3531 . . . . . . . . 9 (∃𝑗(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ 𝑧𝑥 / 𝑖𝐽)
76 excom 2161 . . . . . . . . 9 (∃𝑗𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
7772, 75, 763bitr3g 313 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑧𝑥 / 𝑖𝐽 ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
78 elrelimasn 6103 . . . . . . . . . 10 (Rel 𝑖𝐼 ({𝑖} × 𝐽) → (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧))
794, 78ax-mp 5 . . . . . . . . 9 (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧)
80 df-br 5143 . . . . . . . . 9 (𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑖𝐼 ({𝑖} × 𝐽))
81 eliunxp 5847 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ 𝑖𝐼 ({𝑖} × 𝐽) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
8279, 80, 813bitri 297 . . . . . . . 8 (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
8377, 82bitr4di 289 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑧𝑥 / 𝑖𝐽𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥})))
8483eqrdv 2734 . . . . . 6 ((𝜑𝑥𝐼) → 𝑥 / 𝑖𝐽 = ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}))
8584mpteq1d 5236 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)) = (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
8650, 85eqtrid 2788 . . . 4 ((𝜑𝑥𝐼) → (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
8743, 86breqtrd 5168 . . 3 ((𝜑𝑥𝐼) → 𝐺dom DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
88 dprd2d2.3 . . . . 5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
8926oveq2d 7448 . . . . . 6 ((𝜑𝑖𝐼) → (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑗𝐽𝑆)))
9089mpteq2dva 5241 . . . . 5 (𝜑 → (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
9188, 90breqtrrd 5170 . . . 4 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))))
92 nfcv 2904 . . . . . 6 𝑥(𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
93 nfcv 2904 . . . . . . 7 𝑖 DProd
9429, 93, 36nfov 7462 . . . . . 6 𝑖(𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
9540oveq2d 7448 . . . . . 6 (𝑖 = 𝑥 → (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
9692, 94, 95cbvmpt 5252 . . . . 5 (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
9786oveq2d 7448 . . . . . 6 ((𝜑𝑥𝐼) → (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))
9897mpteq2dva 5241 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
9996, 98eqtrid 2788 . . . 4 (𝜑 → (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
10091, 99breqtrd 5168 . . 3 (𝜑𝐺dom DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
101 eqid 2736 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
1025, 10, 19, 87, 100, 101dprd2da 20063 . 2 (𝜑𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆))
1035, 10, 19, 87, 100, 101dprd2db 20064 . . 3 (𝜑 → (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))))
10499, 90eqtr3d 2778 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
105104oveq2d 7448 . . 3 (𝜑 → (𝐺 DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆)))))
106103, 105eqtrd 2776 . 2 (𝜑 → (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆)))))
107102, 106jca 511 1 (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wral 3060  csb 3898  wss 3950  {csn 4625  cop 4631   ciun 4990   class class class wbr 5142  cmpt 5224   × cxp 5682  dom cdm 5684  cima 5687  Rel wrel 5689  wf 6556  cfv 6560  (class class class)co 7432  cmpo 7434  mrClscmrc 17627  SubGrpcsubg 19139   DProd cdprd 20014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-gim 19278  df-cntz 19336  df-oppg 19365  df-lsm 19655  df-cmn 19801  df-dprd 20016
This theorem is referenced by:  ablfaclem2  20107
  Copyright terms: Public domain W3C validator