MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2d2 Structured version   Visualization version   GIF version

Theorem dprd2d2 18724
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d2.1 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
dprd2d2.2 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))
dprd2d2.3 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
Assertion
Ref Expression
dprd2d2 (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
Distinct variable groups:   𝑖,𝑗,𝐺   𝑖,𝐼,𝑗   𝑗,𝐽   𝜑,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖)

Proof of Theorem dprd2d2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5297 . . . . . 6 Rel ({𝑖} × 𝐽)
21rgenw 3071 . . . . 5 𝑖𝐼 Rel ({𝑖} × 𝐽)
3 reliun 5410 . . . . 5 (Rel 𝑖𝐼 ({𝑖} × 𝐽) ↔ ∀𝑖𝐼 Rel ({𝑖} × 𝐽))
42, 3mpbir 222 . . . 4 Rel 𝑖𝐼 ({𝑖} × 𝐽)
54a1i 11 . . 3 (𝜑 → Rel 𝑖𝐼 ({𝑖} × 𝐽))
6 dprd2d2.1 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
76ralrimivva 3118 . . . 4 (𝜑 → ∀𝑖𝐼𝑗𝐽 𝑆 ∈ (SubGrp‘𝐺))
8 eqid 2765 . . . . 5 (𝑖𝐼, 𝑗𝐽𝑆) = (𝑖𝐼, 𝑗𝐽𝑆)
98fmpt2x 7441 . . . 4 (∀𝑖𝐼𝑗𝐽 𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑖𝐼, 𝑗𝐽𝑆): 𝑖𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺))
107, 9sylib 209 . . 3 (𝜑 → (𝑖𝐼, 𝑗𝐽𝑆): 𝑖𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺))
11 dmiun 5503 . . . 4 dom 𝑖𝐼 ({𝑖} × 𝐽) = 𝑖𝐼 dom ({𝑖} × 𝐽)
12 dmxpss 5750 . . . . . . 7 dom ({𝑖} × 𝐽) ⊆ {𝑖}
13 simpr 477 . . . . . . . 8 ((𝜑𝑖𝐼) → 𝑖𝐼)
1413snssd 4496 . . . . . . 7 ((𝜑𝑖𝐼) → {𝑖} ⊆ 𝐼)
1512, 14syl5ss 3774 . . . . . 6 ((𝜑𝑖𝐼) → dom ({𝑖} × 𝐽) ⊆ 𝐼)
1615ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
17 iunss 4719 . . . . 5 ( 𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼 ↔ ∀𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
1816, 17sylibr 225 . . . 4 (𝜑 𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
1911, 18syl5eqss 3811 . . 3 (𝜑 → dom 𝑖𝐼 ({𝑖} × 𝐽) ⊆ 𝐼)
20 dprd2d2.2 . . . . . . 7 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))
21 simprl 787 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑖𝐼)
22 simprr 789 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑗𝐽)
238ovmpt4g 6985 . . . . . . . . . 10 ((𝑖𝐼𝑗𝐽𝑆 ∈ (SubGrp‘𝐺)) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2421, 22, 6, 23syl3anc 1490 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2524anassrs 459 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ 𝑗𝐽) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2625mpteq2dva 4905 . . . . . . 7 ((𝜑𝑖𝐼) → (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑗𝐽𝑆))
2720, 26breqtrrd 4839 . . . . . 6 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
2827ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑖𝐼 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
29 nfcv 2907 . . . . . . 7 𝑖𝐺
30 nfcv 2907 . . . . . . 7 𝑖dom DProd
31 nfcsb1v 3709 . . . . . . . 8 𝑖𝑥 / 𝑖𝐽
32 nfcv 2907 . . . . . . . . 9 𝑖𝑥
33 nfmpt21 6924 . . . . . . . . 9 𝑖(𝑖𝐼, 𝑗𝐽𝑆)
34 nfcv 2907 . . . . . . . . 9 𝑖𝑗
3532, 33, 34nfov 6876 . . . . . . . 8 𝑖(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)
3631, 35nfmpt 4907 . . . . . . 7 𝑖(𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
3729, 30, 36nfbr 4858 . . . . . 6 𝑖 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
38 csbeq1a 3702 . . . . . . . 8 (𝑖 = 𝑥𝐽 = 𝑥 / 𝑖𝐽)
39 oveq1 6853 . . . . . . . 8 (𝑖 = 𝑥 → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
4038, 39mpteq12dv 4894 . . . . . . 7 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
4140breq2d 4823 . . . . . 6 (𝑖 = 𝑥 → (𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) ↔ 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
4237, 41rspc 3456 . . . . 5 (𝑥𝐼 → (∀𝑖𝐼 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) → 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
4328, 42mpan9 502 . . . 4 ((𝜑𝑥𝐼) → 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
44 nfcv 2907 . . . . . 6 𝑦(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)
45 nfcv 2907 . . . . . . 7 𝑗𝑥
46 nfmpt22 6925 . . . . . . 7 𝑗(𝑖𝐼, 𝑗𝐽𝑆)
47 nfcv 2907 . . . . . . 7 𝑗𝑦
4845, 46, 47nfov 6876 . . . . . 6 𝑗(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)
49 oveq2 6854 . . . . . 6 (𝑗 = 𝑦 → (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))
5044, 48, 49cbvmpt 4910 . . . . 5 (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑦𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))
51 nfv 2009 . . . . . . . . . . . . 13 𝑖 𝑗 = 𝑧
5231nfcri 2901 . . . . . . . . . . . . 13 𝑖 𝑗𝑥 / 𝑖𝐽
5351, 52nfan 1998 . . . . . . . . . . . 12 𝑖(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽)
5438eleq2d 2830 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → (𝑗𝐽𝑗𝑥 / 𝑖𝐽))
5554anbi2d 622 . . . . . . . . . . . 12 (𝑖 = 𝑥 → ((𝑗 = 𝑧𝑗𝐽) ↔ (𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽)))
5653, 55equsexv 2274 . . . . . . . . . . 11 (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ (𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽))
57 simprl 787 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑖 = 𝑥)
58 simplr 785 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑥𝐼)
5957, 58eqeltrd 2844 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑖𝐼)
6059biantrurd 528 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → (𝑗𝐽 ↔ (𝑖𝐼𝑗𝐽)))
6160pm5.32da 574 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (((𝑖 = 𝑥𝑗 = 𝑧) ∧ 𝑗𝐽) ↔ ((𝑖 = 𝑥𝑗 = 𝑧) ∧ (𝑖𝐼𝑗𝐽))))
62 anass 460 . . . . . . . . . . . . 13 (((𝑖 = 𝑥𝑗 = 𝑧) ∧ 𝑗𝐽) ↔ (𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)))
63 eqcom 2772 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ↔ ⟨𝑖, 𝑗⟩ = ⟨𝑥, 𝑧⟩)
64 vex 3353 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
65 vex 3353 . . . . . . . . . . . . . . . 16 𝑗 ∈ V
6664, 65opth 5102 . . . . . . . . . . . . . . 15 (⟨𝑖, 𝑗⟩ = ⟨𝑥, 𝑧⟩ ↔ (𝑖 = 𝑥𝑗 = 𝑧))
6763, 66bitr2i 267 . . . . . . . . . . . . . 14 ((𝑖 = 𝑥𝑗 = 𝑧) ↔ ⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩)
6867anbi1i 617 . . . . . . . . . . . . 13 (((𝑖 = 𝑥𝑗 = 𝑧) ∧ (𝑖𝐼𝑗𝐽)) ↔ (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
6961, 62, 683bitr3g 304 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → ((𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7069exbidv 2016 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ ∃𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7156, 70syl5bbr 276 . . . . . . . . . 10 ((𝜑𝑥𝐼) → ((𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ ∃𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7271exbidv 2016 . . . . . . . . 9 ((𝜑𝑥𝐼) → (∃𝑗(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ ∃𝑗𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
73 vex 3353 . . . . . . . . . 10 𝑧 ∈ V
74 eleq1w 2827 . . . . . . . . . 10 (𝑗 = 𝑧 → (𝑗𝑥 / 𝑖𝐽𝑧𝑥 / 𝑖𝐽))
7573, 74ceqsexv 3395 . . . . . . . . 9 (∃𝑗(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ 𝑧𝑥 / 𝑖𝐽)
76 excom 2206 . . . . . . . . 9 (∃𝑗𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
7772, 75, 763bitr3g 304 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑧𝑥 / 𝑖𝐽 ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
78 elrelimasn 5673 . . . . . . . . . 10 (Rel 𝑖𝐼 ({𝑖} × 𝐽) → (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧))
794, 78ax-mp 5 . . . . . . . . 9 (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧)
80 df-br 4812 . . . . . . . . 9 (𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑖𝐼 ({𝑖} × 𝐽))
81 eliunxp 5430 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ 𝑖𝐼 ({𝑖} × 𝐽) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
8279, 80, 813bitri 288 . . . . . . . 8 (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
8377, 82syl6bbr 280 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑧𝑥 / 𝑖𝐽𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥})))
8483eqrdv 2763 . . . . . 6 ((𝜑𝑥𝐼) → 𝑥 / 𝑖𝐽 = ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}))
8584mpteq1d 4899 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)) = (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
8650, 85syl5eq 2811 . . . 4 ((𝜑𝑥𝐼) → (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
8743, 86breqtrd 4837 . . 3 ((𝜑𝑥𝐼) → 𝐺dom DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
88 dprd2d2.3 . . . . 5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
8926oveq2d 6862 . . . . . 6 ((𝜑𝑖𝐼) → (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑗𝐽𝑆)))
9089mpteq2dva 4905 . . . . 5 (𝜑 → (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
9188, 90breqtrrd 4839 . . . 4 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))))
92 nfcv 2907 . . . . . 6 𝑥(𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
93 nfcv 2907 . . . . . . 7 𝑖 DProd
9429, 93, 36nfov 6876 . . . . . 6 𝑖(𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
9540oveq2d 6862 . . . . . 6 (𝑖 = 𝑥 → (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
9692, 94, 95cbvmpt 4910 . . . . 5 (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
9786oveq2d 6862 . . . . . 6 ((𝜑𝑥𝐼) → (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))
9897mpteq2dva 4905 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
9996, 98syl5eq 2811 . . . 4 (𝜑 → (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
10091, 99breqtrd 4837 . . 3 (𝜑𝐺dom DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
101 eqid 2765 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
1025, 10, 19, 87, 100, 101dprd2da 18722 . 2 (𝜑𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆))
1035, 10, 19, 87, 100, 101dprd2db 18723 . . 3 (𝜑 → (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))))
10499, 90eqtr3d 2801 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
105104oveq2d 6862 . . 3 (𝜑 → (𝐺 DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆)))))
106103, 105eqtrd 2799 . 2 (𝜑 → (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆)))))
107102, 106jca 507 1 (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  wral 3055  csb 3693  wss 3734  {csn 4336  cop 4342   ciun 4678   class class class wbr 4811  cmpt 4890   × cxp 5277  dom cdm 5279  cima 5282  Rel wrel 5284  wf 6066  cfv 6070  (class class class)co 6846  cmpt2 6848  mrClscmrc 16523  SubGrpcsubg 17866   DProd cdprd 18673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-tpos 7559  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-map 8066  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-oi 8626  df-card 9020  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-2 11339  df-n0 11543  df-z 11629  df-uz 11892  df-fz 12539  df-fzo 12679  df-seq 13014  df-hash 13327  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-0g 16382  df-gsum 16383  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-mhm 17615  df-submnd 17616  df-grp 17706  df-minusg 17707  df-sbg 17708  df-mulg 17822  df-subg 17869  df-ghm 17936  df-gim 17979  df-cntz 18027  df-oppg 18053  df-lsm 18329  df-cmn 18475  df-dprd 18675
This theorem is referenced by:  ablfaclem2  18766
  Copyright terms: Public domain W3C validator