MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2d2 Structured version   Visualization version   GIF version

Theorem dprd2d2 19960
Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
dprd2d2.1 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
dprd2d2.2 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))
dprd2d2.3 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
Assertion
Ref Expression
dprd2d2 (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
Distinct variable groups:   𝑖,𝑗,𝐺   𝑖,𝐼,𝑗   𝑗,𝐽   𝜑,𝑖,𝑗
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖)

Proof of Theorem dprd2d2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5637 . . . . . 6 Rel ({𝑖} × 𝐽)
21rgenw 3052 . . . . 5 𝑖𝐼 Rel ({𝑖} × 𝐽)
3 reliun 5760 . . . . 5 (Rel 𝑖𝐼 ({𝑖} × 𝐽) ↔ ∀𝑖𝐼 Rel ({𝑖} × 𝐽))
42, 3mpbir 231 . . . 4 Rel 𝑖𝐼 ({𝑖} × 𝐽)
54a1i 11 . . 3 (𝜑 → Rel 𝑖𝐼 ({𝑖} × 𝐽))
6 dprd2d2.1 . . . . 5 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑆 ∈ (SubGrp‘𝐺))
76ralrimivva 3176 . . . 4 (𝜑 → ∀𝑖𝐼𝑗𝐽 𝑆 ∈ (SubGrp‘𝐺))
8 eqid 2733 . . . . 5 (𝑖𝐼, 𝑗𝐽𝑆) = (𝑖𝐼, 𝑗𝐽𝑆)
98fmpox 8005 . . . 4 (∀𝑖𝐼𝑗𝐽 𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑖𝐼, 𝑗𝐽𝑆): 𝑖𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺))
107, 9sylib 218 . . 3 (𝜑 → (𝑖𝐼, 𝑗𝐽𝑆): 𝑖𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺))
11 dmiun 5857 . . . 4 dom 𝑖𝐼 ({𝑖} × 𝐽) = 𝑖𝐼 dom ({𝑖} × 𝐽)
12 dmxpss 6123 . . . . . . 7 dom ({𝑖} × 𝐽) ⊆ {𝑖}
13 simpr 484 . . . . . . . 8 ((𝜑𝑖𝐼) → 𝑖𝐼)
1413snssd 4760 . . . . . . 7 ((𝜑𝑖𝐼) → {𝑖} ⊆ 𝐼)
1512, 14sstrid 3942 . . . . . 6 ((𝜑𝑖𝐼) → dom ({𝑖} × 𝐽) ⊆ 𝐼)
1615ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
17 iunss 4995 . . . . 5 ( 𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼 ↔ ∀𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
1816, 17sylibr 234 . . . 4 (𝜑 𝑖𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼)
1911, 18eqsstrid 3969 . . 3 (𝜑 → dom 𝑖𝐼 ({𝑖} × 𝐽) ⊆ 𝐼)
20 dprd2d2.2 . . . . . . 7 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽𝑆))
21 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑖𝐼)
22 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → 𝑗𝐽)
238ovmpt4g 7499 . . . . . . . . . 10 ((𝑖𝐼𝑗𝐽𝑆 ∈ (SubGrp‘𝐺)) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2421, 22, 6, 23syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑖𝐼𝑗𝐽)) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2524anassrs 467 . . . . . . . 8 (((𝜑𝑖𝐼) ∧ 𝑗𝐽) → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = 𝑆)
2625mpteq2dva 5186 . . . . . . 7 ((𝜑𝑖𝐼) → (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑗𝐽𝑆))
2720, 26breqtrrd 5121 . . . . . 6 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
2827ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑖𝐼 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
29 nfcv 2895 . . . . . . 7 𝑖𝐺
30 nfcv 2895 . . . . . . 7 𝑖dom DProd
31 nfcsb1v 3870 . . . . . . . 8 𝑖𝑥 / 𝑖𝐽
32 nfcv 2895 . . . . . . . . 9 𝑖𝑥
33 nfmpo1 7432 . . . . . . . . 9 𝑖(𝑖𝐼, 𝑗𝐽𝑆)
34 nfcv 2895 . . . . . . . . 9 𝑖𝑗
3532, 33, 34nfov 7382 . . . . . . . 8 𝑖(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)
3631, 35nfmpt 5191 . . . . . . 7 𝑖(𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
3729, 30, 36nfbr 5140 . . . . . 6 𝑖 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
38 csbeq1a 3860 . . . . . . . 8 (𝑖 = 𝑥𝐽 = 𝑥 / 𝑖𝐽)
39 oveq1 7359 . . . . . . . 8 (𝑖 = 𝑥 → (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))
4038, 39mpteq12dv 5180 . . . . . . 7 (𝑖 = 𝑥 → (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
4140breq2d 5105 . . . . . 6 (𝑖 = 𝑥 → (𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) ↔ 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
4237, 41rspc 3561 . . . . 5 (𝑥𝐼 → (∀𝑖𝐼 𝐺dom DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) → 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
4328, 42mpan9 506 . . . 4 ((𝜑𝑥𝐼) → 𝐺dom DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
44 nfcv 2895 . . . . . 6 𝑦(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)
45 nfcv 2895 . . . . . . 7 𝑗𝑥
46 nfmpo2 7433 . . . . . . 7 𝑗(𝑖𝐼, 𝑗𝐽𝑆)
47 nfcv 2895 . . . . . . 7 𝑗𝑦
4845, 46, 47nfov 7382 . . . . . 6 𝑗(𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)
49 oveq2 7360 . . . . . 6 (𝑗 = 𝑦 → (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗) = (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))
5044, 48, 49cbvmpt 5195 . . . . 5 (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑦𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))
51 nfv 1915 . . . . . . . . . . . . 13 𝑖 𝑗 = 𝑧
5231nfcri 2887 . . . . . . . . . . . . 13 𝑖 𝑗𝑥 / 𝑖𝐽
5351, 52nfan 1900 . . . . . . . . . . . 12 𝑖(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽)
5438eleq2d 2819 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → (𝑗𝐽𝑗𝑥 / 𝑖𝐽))
5554anbi2d 630 . . . . . . . . . . . 12 (𝑖 = 𝑥 → ((𝑗 = 𝑧𝑗𝐽) ↔ (𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽)))
5653, 55equsexv 2273 . . . . . . . . . . 11 (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ (𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽))
57 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑖 = 𝑥)
58 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑥𝐼)
5957, 58eqeltrd 2833 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → 𝑖𝐼)
6059biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐼) ∧ (𝑖 = 𝑥𝑗 = 𝑧)) → (𝑗𝐽 ↔ (𝑖𝐼𝑗𝐽)))
6160pm5.32da 579 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (((𝑖 = 𝑥𝑗 = 𝑧) ∧ 𝑗𝐽) ↔ ((𝑖 = 𝑥𝑗 = 𝑧) ∧ (𝑖𝐼𝑗𝐽))))
62 anass 468 . . . . . . . . . . . . 13 (((𝑖 = 𝑥𝑗 = 𝑧) ∧ 𝑗𝐽) ↔ (𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)))
63 eqcom 2740 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ↔ ⟨𝑖, 𝑗⟩ = ⟨𝑥, 𝑧⟩)
64 vex 3441 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
65 vex 3441 . . . . . . . . . . . . . . . 16 𝑗 ∈ V
6664, 65opth 5419 . . . . . . . . . . . . . . 15 (⟨𝑖, 𝑗⟩ = ⟨𝑥, 𝑧⟩ ↔ (𝑖 = 𝑥𝑗 = 𝑧))
6763, 66bitr2i 276 . . . . . . . . . . . . . 14 ((𝑖 = 𝑥𝑗 = 𝑧) ↔ ⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩)
6867anbi1i 624 . . . . . . . . . . . . 13 (((𝑖 = 𝑥𝑗 = 𝑧) ∧ (𝑖𝐼𝑗𝐽)) ↔ (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
6961, 62, 683bitr3g 313 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → ((𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ (⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7069exbidv 1922 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧𝑗𝐽)) ↔ ∃𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7156, 70bitr3id 285 . . . . . . . . . 10 ((𝜑𝑥𝐼) → ((𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ ∃𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
7271exbidv 1922 . . . . . . . . 9 ((𝜑𝑥𝐼) → (∃𝑗(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ ∃𝑗𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
73 vex 3441 . . . . . . . . . 10 𝑧 ∈ V
74 eleq1w 2816 . . . . . . . . . 10 (𝑗 = 𝑧 → (𝑗𝑥 / 𝑖𝐽𝑧𝑥 / 𝑖𝐽))
7573, 74ceqsexv 3487 . . . . . . . . 9 (∃𝑗(𝑗 = 𝑧𝑗𝑥 / 𝑖𝐽) ↔ 𝑧𝑥 / 𝑖𝐽)
76 excom 2167 . . . . . . . . 9 (∃𝑗𝑖(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
7772, 75, 763bitr3g 313 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝑧𝑥 / 𝑖𝐽 ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽))))
78 elrelimasn 6039 . . . . . . . . . 10 (Rel 𝑖𝐼 ({𝑖} × 𝐽) → (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧))
794, 78ax-mp 5 . . . . . . . . 9 (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧)
80 df-br 5094 . . . . . . . . 9 (𝑥 𝑖𝐼 ({𝑖} × 𝐽)𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑖𝐼 ({𝑖} × 𝐽))
81 eliunxp 5781 . . . . . . . . 9 (⟨𝑥, 𝑧⟩ ∈ 𝑖𝐼 ({𝑖} × 𝐽) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
8279, 80, 813bitri 297 . . . . . . . 8 (𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ ∃𝑖𝑗(⟨𝑥, 𝑧⟩ = ⟨𝑖, 𝑗⟩ ∧ (𝑖𝐼𝑗𝐽)))
8377, 82bitr4di 289 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑧𝑥 / 𝑖𝐽𝑧 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥})))
8483eqrdv 2731 . . . . . 6 ((𝜑𝑥𝐼) → 𝑥 / 𝑖𝐽 = ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}))
8584mpteq1d 5183 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)) = (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
8650, 85eqtrid 2780 . . . 4 ((𝜑𝑥𝐼) → (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)) = (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
8743, 86breqtrd 5119 . . 3 ((𝜑𝑥𝐼) → 𝐺dom DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))
88 dprd2d2.3 . . . . 5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
8926oveq2d 7368 . . . . . 6 ((𝜑𝑖𝐼) → (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑗𝐽𝑆)))
9089mpteq2dva 5186 . . . . 5 (𝜑 → (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
9188, 90breqtrrd 5121 . . . 4 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))))
92 nfcv 2895 . . . . . 6 𝑥(𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
93 nfcv 2895 . . . . . . 7 𝑖 DProd
9429, 93, 36nfov 7382 . . . . . 6 𝑖(𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))
9540oveq2d 7368 . . . . . 6 (𝑖 = 𝑥 → (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
9692, 94, 95cbvmpt 5195 . . . . 5 (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))))
9786oveq2d 7368 . . . . . 6 ((𝜑𝑥𝐼) → (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗))) = (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))
9897mpteq2dva 5186 . . . . 5 (𝜑 → (𝑥𝐼 ↦ (𝐺 DProd (𝑗𝑥 / 𝑖𝐽 ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
9996, 98eqtrid 2780 . . . 4 (𝜑 → (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽 ↦ (𝑖(𝑖𝐼, 𝑗𝐽𝑆)𝑗)))) = (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
10091, 99breqtrd 5119 . . 3 (𝜑𝐺dom DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))))
101 eqid 2733 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
1025, 10, 19, 87, 100, 101dprd2da 19958 . 2 (𝜑𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆))
1035, 10, 19, 87, 100, 101dprd2db 19959 . . 3 (𝜑 → (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))))
10499, 90eqtr3d 2770 . . . 4 (𝜑 → (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦)))) = (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))
105104oveq2d 7368 . . 3 (𝜑 → (𝐺 DProd (𝑥𝐼 ↦ (𝐺 DProd (𝑦 ∈ ( 𝑖𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖𝐼, 𝑗𝐽𝑆)𝑦))))) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆)))))
106103, 105eqtrd 2768 . 2 (𝜑 → (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆)))))
107102, 106jca 511 1 (𝜑 → (𝐺dom DProd (𝑖𝐼, 𝑗𝐽𝑆) ∧ (𝐺 DProd (𝑖𝐼, 𝑗𝐽𝑆)) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗𝐽𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wral 3048  csb 3846  wss 3898  {csn 4575  cop 4581   ciun 4941   class class class wbr 5093  cmpt 5174   × cxp 5617  dom cdm 5619  cima 5622  Rel wrel 5624  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  mrClscmrc 17487  SubGrpcsubg 19035   DProd cdprd 19909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-gsum 17348  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-gim 19173  df-cntz 19231  df-oppg 19260  df-lsm 19550  df-cmn 19696  df-dprd 19911
This theorem is referenced by:  ablfaclem2  20002
  Copyright terms: Public domain W3C validator