Step | Hyp | Ref
| Expression |
1 | | relxp 5607 |
. . . . . 6
⊢ Rel
({𝑖} × 𝐽) |
2 | 1 | rgenw 3076 |
. . . . 5
⊢
∀𝑖 ∈
𝐼 Rel ({𝑖} × 𝐽) |
3 | | reliun 5726 |
. . . . 5
⊢ (Rel
∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽) ↔ ∀𝑖 ∈ 𝐼 Rel ({𝑖} × 𝐽)) |
4 | 2, 3 | mpbir 230 |
. . . 4
⊢ Rel
∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽) |
5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → Rel ∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽)) |
6 | | dprd2d2.1 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝑆 ∈ (SubGrp‘𝐺)) |
7 | 6 | ralrimivva 3123 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽 𝑆 ∈ (SubGrp‘𝐺)) |
8 | | eqid 2738 |
. . . . 5
⊢ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆) = (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆) |
9 | 8 | fmpox 7907 |
. . . 4
⊢
(∀𝑖 ∈
𝐼 ∀𝑗 ∈ 𝐽 𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆):∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺)) |
10 | 7, 9 | sylib 217 |
. . 3
⊢ (𝜑 → (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆):∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽)⟶(SubGrp‘𝐺)) |
11 | | dmiun 5822 |
. . . 4
⊢ dom
∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽) = ∪
𝑖 ∈ 𝐼 dom ({𝑖} × 𝐽) |
12 | | dmxpss 6074 |
. . . . . . 7
⊢ dom
({𝑖} × 𝐽) ⊆ {𝑖} |
13 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝑖 ∈ 𝐼) |
14 | 13 | snssd 4742 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → {𝑖} ⊆ 𝐼) |
15 | 12, 14 | sstrid 3932 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → dom ({𝑖} × 𝐽) ⊆ 𝐼) |
16 | 15 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑖 ∈ 𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼) |
17 | | iunss 4975 |
. . . . 5
⊢ (∪ 𝑖 ∈ 𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼 ↔ ∀𝑖 ∈ 𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼) |
18 | 16, 17 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∪ 𝑖 ∈ 𝐼 dom ({𝑖} × 𝐽) ⊆ 𝐼) |
19 | 11, 18 | eqsstrid 3969 |
. . 3
⊢ (𝜑 → dom ∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽) ⊆ 𝐼) |
20 | | dprd2d2.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ 𝐽 ↦ 𝑆)) |
21 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝑖 ∈ 𝐼) |
22 | | simprr 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → 𝑗 ∈ 𝐽) |
23 | 8 | ovmpt4g 7420 |
. . . . . . . . . 10
⊢ ((𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗) = 𝑆) |
24 | 21, 22, 6, 23 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) → (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗) = 𝑆) |
25 | 24 | anassrs 468 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼) ∧ 𝑗 ∈ 𝐽) → (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗) = 𝑆) |
26 | 25 | mpteq2dva 5174 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)) = (𝑗 ∈ 𝐽 ↦ 𝑆)) |
27 | 20, 26 | breqtrrd 5102 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗))) |
28 | 27 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑖 ∈ 𝐼 𝐺dom DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗))) |
29 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑖𝐺 |
30 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑖dom
DProd |
31 | | nfcsb1v 3857 |
. . . . . . . 8
⊢
Ⅎ𝑖⦋𝑥 / 𝑖⦌𝐽 |
32 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝑥 |
33 | | nfmpo1 7355 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆) |
34 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝑗 |
35 | 32, 33, 34 | nfov 7305 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗) |
36 | 31, 35 | nfmpt 5181 |
. . . . . . 7
⊢
Ⅎ𝑖(𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)) |
37 | 29, 30, 36 | nfbr 5121 |
. . . . . 6
⊢
Ⅎ𝑖 𝐺dom DProd (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)) |
38 | | csbeq1a 3846 |
. . . . . . . 8
⊢ (𝑖 = 𝑥 → 𝐽 = ⦋𝑥 / 𝑖⦌𝐽) |
39 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑖 = 𝑥 → (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗) = (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)) |
40 | 38, 39 | mpteq12dv 5165 |
. . . . . . 7
⊢ (𝑖 = 𝑥 → (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)) = (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗))) |
41 | 40 | breq2d 5086 |
. . . . . 6
⊢ (𝑖 = 𝑥 → (𝐺dom DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)) ↔ 𝐺dom DProd (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)))) |
42 | 37, 41 | rspc 3549 |
. . . . 5
⊢ (𝑥 ∈ 𝐼 → (∀𝑖 ∈ 𝐼 𝐺dom DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)) → 𝐺dom DProd (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)))) |
43 | 28, 42 | mpan9 507 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺dom DProd (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗))) |
44 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑦(𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗) |
45 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑗𝑥 |
46 | | nfmpo2 7356 |
. . . . . . 7
⊢
Ⅎ𝑗(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆) |
47 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑗𝑦 |
48 | 45, 46, 47 | nfov 7305 |
. . . . . 6
⊢
Ⅎ𝑗(𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦) |
49 | | oveq2 7283 |
. . . . . 6
⊢ (𝑗 = 𝑦 → (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗) = (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦)) |
50 | 44, 48, 49 | cbvmpt 5185 |
. . . . 5
⊢ (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)) = (𝑦 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦)) |
51 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖 𝑗 = 𝑧 |
52 | 31 | nfcri 2894 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖 𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 |
53 | 51, 52 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑗 = 𝑧 ∧ 𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽) |
54 | 38 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑥 → (𝑗 ∈ 𝐽 ↔ 𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽)) |
55 | 54 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑥 → ((𝑗 = 𝑧 ∧ 𝑗 ∈ 𝐽) ↔ (𝑗 = 𝑧 ∧ 𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽))) |
56 | 53, 55 | equsexv 2260 |
. . . . . . . . . . 11
⊢
(∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧 ∧ 𝑗 ∈ 𝐽)) ↔ (𝑗 = 𝑧 ∧ 𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽)) |
57 | | simprl 768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ (𝑖 = 𝑥 ∧ 𝑗 = 𝑧)) → 𝑖 = 𝑥) |
58 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ (𝑖 = 𝑥 ∧ 𝑗 = 𝑧)) → 𝑥 ∈ 𝐼) |
59 | 57, 58 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ (𝑖 = 𝑥 ∧ 𝑗 = 𝑧)) → 𝑖 ∈ 𝐼) |
60 | 59 | biantrurd 533 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ (𝑖 = 𝑥 ∧ 𝑗 = 𝑧)) → (𝑗 ∈ 𝐽 ↔ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽))) |
61 | 60 | pm5.32da 579 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (((𝑖 = 𝑥 ∧ 𝑗 = 𝑧) ∧ 𝑗 ∈ 𝐽) ↔ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑧) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)))) |
62 | | anass 469 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝑥 ∧ 𝑗 = 𝑧) ∧ 𝑗 ∈ 𝐽) ↔ (𝑖 = 𝑥 ∧ (𝑗 = 𝑧 ∧ 𝑗 ∈ 𝐽))) |
63 | | eqcom 2745 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ↔ 〈𝑖, 𝑗〉 = 〈𝑥, 𝑧〉) |
64 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑖 ∈ V |
65 | | vex 3436 |
. . . . . . . . . . . . . . . 16
⊢ 𝑗 ∈ V |
66 | 64, 65 | opth 5391 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑖, 𝑗〉 = 〈𝑥, 𝑧〉 ↔ (𝑖 = 𝑥 ∧ 𝑗 = 𝑧)) |
67 | 63, 66 | bitr2i 275 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 𝑥 ∧ 𝑗 = 𝑧) ↔ 〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉) |
68 | 67 | anbi1i 624 |
. . . . . . . . . . . . 13
⊢ (((𝑖 = 𝑥 ∧ 𝑗 = 𝑧) ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ↔ (〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽))) |
69 | 61, 62, 68 | 3bitr3g 313 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑖 = 𝑥 ∧ (𝑗 = 𝑧 ∧ 𝑗 ∈ 𝐽)) ↔ (〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)))) |
70 | 69 | exbidv 1924 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (∃𝑖(𝑖 = 𝑥 ∧ (𝑗 = 𝑧 ∧ 𝑗 ∈ 𝐽)) ↔ ∃𝑖(〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)))) |
71 | 56, 70 | bitr3id 285 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑗 = 𝑧 ∧ 𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽) ↔ ∃𝑖(〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)))) |
72 | 71 | exbidv 1924 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (∃𝑗(𝑗 = 𝑧 ∧ 𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽) ↔ ∃𝑗∃𝑖(〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)))) |
73 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
74 | | eleq1w 2821 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑧 → (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↔ 𝑧 ∈ ⦋𝑥 / 𝑖⦌𝐽)) |
75 | 73, 74 | ceqsexv 3479 |
. . . . . . . . 9
⊢
(∃𝑗(𝑗 = 𝑧 ∧ 𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽) ↔ 𝑧 ∈ ⦋𝑥 / 𝑖⦌𝐽) |
76 | | excom 2162 |
. . . . . . . . 9
⊢
(∃𝑗∃𝑖(〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)) ↔ ∃𝑖∃𝑗(〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽))) |
77 | 72, 75, 76 | 3bitr3g 313 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑧 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↔ ∃𝑖∃𝑗(〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽)))) |
78 | | elrelimasn 5993 |
. . . . . . . . . 10
⊢ (Rel
∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽) → (𝑧 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽)𝑧)) |
79 | 4, 78 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑧 ∈ (∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ 𝑥∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽)𝑧) |
80 | | df-br 5075 |
. . . . . . . . 9
⊢ (𝑥∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽)𝑧 ↔ 〈𝑥, 𝑧〉 ∈ ∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽)) |
81 | | eliunxp 5746 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑧〉 ∈ ∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽) ↔ ∃𝑖∃𝑗(〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽))) |
82 | 79, 80, 81 | 3bitri 297 |
. . . . . . . 8
⊢ (𝑧 ∈ (∪ 𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↔ ∃𝑖∃𝑗(〈𝑥, 𝑧〉 = 〈𝑖, 𝑗〉 ∧ (𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝐽))) |
83 | 77, 82 | bitr4di 289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑧 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↔ 𝑧 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}))) |
84 | 83 | eqrdv 2736 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ⦋𝑥 / 𝑖⦌𝐽 = (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥})) |
85 | 84 | mpteq1d 5169 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑦 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦)) = (𝑦 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦))) |
86 | 50, 85 | eqtrid 2790 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)) = (𝑦 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦))) |
87 | 43, 86 | breqtrd 5100 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐺dom DProd (𝑦 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦))) |
88 | | dprd2d2.3 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))) |
89 | 26 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝐺 DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗))) = (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆))) |
90 | 89 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)))) = (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))) |
91 | 88, 90 | breqtrrd 5102 |
. . . 4
⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗))))) |
92 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑥(𝐺 DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗))) |
93 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑖
DProd |
94 | 29, 93, 36 | nfov 7305 |
. . . . . 6
⊢
Ⅎ𝑖(𝐺 DProd (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗))) |
95 | 40 | oveq2d 7291 |
. . . . . 6
⊢ (𝑖 = 𝑥 → (𝐺 DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗))) = (𝐺 DProd (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)))) |
96 | 92, 94, 95 | cbvmpt 5185 |
. . . . 5
⊢ (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)))) = (𝑥 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)))) |
97 | 86 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺 DProd (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗))) = (𝐺 DProd (𝑦 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦)))) |
98 | 97 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ ⦋𝑥 / 𝑖⦌𝐽 ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)))) = (𝑥 ∈ 𝐼 ↦ (𝐺 DProd (𝑦 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦))))) |
99 | 96, 98 | eqtrid 2790 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ (𝑖(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑗)))) = (𝑥 ∈ 𝐼 ↦ (𝐺 DProd (𝑦 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦))))) |
100 | 91, 99 | breqtrd 5100 |
. . 3
⊢ (𝜑 → 𝐺dom DProd (𝑥 ∈ 𝐼 ↦ (𝐺 DProd (𝑦 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦))))) |
101 | | eqid 2738 |
. . 3
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
102 | 5, 10, 19, 87, 100, 101 | dprd2da 19645 |
. 2
⊢ (𝜑 → 𝐺dom DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)) |
103 | 5, 10, 19, 87, 100, 101 | dprd2db 19646 |
. . 3
⊢ (𝜑 → (𝐺 DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)) = (𝐺 DProd (𝑥 ∈ 𝐼 ↦ (𝐺 DProd (𝑦 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦)))))) |
104 | 99, 90 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐺 DProd (𝑦 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦)))) = (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))) |
105 | 104 | oveq2d 7291 |
. . 3
⊢ (𝜑 → (𝐺 DProd (𝑥 ∈ 𝐼 ↦ (𝐺 DProd (𝑦 ∈ (∪
𝑖 ∈ 𝐼 ({𝑖} × 𝐽) “ {𝑥}) ↦ (𝑥(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)𝑦))))) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆))))) |
106 | 103, 105 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝐺 DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆))))) |
107 | 102, 106 | jca 512 |
1
⊢ (𝜑 → (𝐺dom DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆) ∧ (𝐺 DProd (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ↦ 𝑆)) = (𝐺 DProd (𝑖 ∈ 𝐼 ↦ (𝐺 DProd (𝑗 ∈ 𝐽 ↦ 𝑆)))))) |