Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege124d Structured version   Visualization version   GIF version

Theorem frege124d 40099
Description: If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 40326. (Contributed by RP, 16-Jul-2020.)
Hypotheses
Ref Expression
frege124d.f (𝜑𝐹 ∈ V)
frege124d.x (𝜑𝑋 ∈ dom 𝐹)
frege124d.a (𝜑𝐴 = (𝐹𝑋))
frege124d.xb (𝜑𝑋(t+‘𝐹)𝐵)
frege124d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege124d (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))

Proof of Theorem frege124d
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frege124d.a . . 3 (𝜑𝐴 = (𝐹𝑋))
2 frege124d.fun . . . . 5 (𝜑 → Fun 𝐹)
3 frege124d.xb . . . . . . 7 (𝜑𝑋(t+‘𝐹)𝐵)
41eqcomd 2827 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) = 𝐴)
5 frege124d.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ dom 𝐹)
6 funbrfvb 6715 . . . . . . . . . . . 12 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹𝑋) = 𝐴𝑋𝐹𝐴))
72, 5, 6syl2anc 586 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑋) = 𝐴𝑋𝐹𝐴))
84, 7mpbid 234 . . . . . . . . . 10 (𝜑𝑋𝐹𝐴)
9 funeu 6375 . . . . . . . . . 10 ((Fun 𝐹𝑋𝐹𝐴) → ∃!𝑎 𝑋𝐹𝑎)
102, 8, 9syl2anc 586 . . . . . . . . 9 (𝜑 → ∃!𝑎 𝑋𝐹𝑎)
11 fvex 6678 . . . . . . . . . . . . 13 (𝐹𝑋) ∈ V
121, 11eqeltrdi 2921 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
13 sbcan 3821 . . . . . . . . . . . . 13 ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ ([𝐴 / 𝑎]𝑋𝐹𝑎[𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵))
14 sbcbr2g 5117 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑋𝐹𝑎𝑋𝐹𝐴 / 𝑎𝑎))
15 csbvarg 4383 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → 𝐴 / 𝑎𝑎 = 𝐴)
1615breq2d 5071 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (𝑋𝐹𝐴 / 𝑎𝑎𝑋𝐹𝐴))
1714, 16bitrd 281 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑋𝐹𝑎𝑋𝐹𝐴))
18 sbcng 3819 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ([𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵 ↔ ¬ [𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵))
19 sbcbr1g 5116 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵𝐴 / 𝑎𝑎(t+‘𝐹)𝐵))
2015breq1d 5069 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → (𝐴 / 𝑎𝑎(t+‘𝐹)𝐵𝐴(t+‘𝐹)𝐵))
2119, 20bitrd 281 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵𝐴(t+‘𝐹)𝐵))
2221notbid 320 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (¬ [𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵 ↔ ¬ 𝐴(t+‘𝐹)𝐵))
2318, 22bitrd 281 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ([𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵 ↔ ¬ 𝐴(t+‘𝐹)𝐵))
2417, 23anbi12d 632 . . . . . . . . . . . . 13 (𝐴 ∈ V → (([𝐴 / 𝑎]𝑋𝐹𝑎[𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
2513, 24syl5bb 285 . . . . . . . . . . . 12 (𝐴 ∈ V → ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
2612, 25syl 17 . . . . . . . . . . 11 (𝜑 → ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
27 spesbc 3865 . . . . . . . . . . 11 ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵))
2826, 27syl6bir 256 . . . . . . . . . 10 (𝜑 → ((𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵) → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)))
298, 28mpand 693 . . . . . . . . 9 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)))
30 eupicka 2715 . . . . . . . . 9 ((∃!𝑎 𝑋𝐹𝑎 ∧ ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)) → ∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵))
3110, 29, 30syl6an 682 . . . . . . . 8 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵)))
32 frege124d.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
33 funrel 6367 . . . . . . . . . . . . . 14 (Fun 𝐹 → Rel 𝐹)
342, 33syl 17 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
35 reltrclfv 14371 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
3632, 34, 35syl2anc 586 . . . . . . . . . . . 12 (𝜑 → Rel (t+‘𝐹))
37 brrelex2 5601 . . . . . . . . . . . 12 ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐵) → 𝐵 ∈ V)
3836, 3, 37syl2anc 586 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
39 brcog 5732 . . . . . . . . . . 11 ((𝑋 ∈ dom 𝐹𝐵 ∈ V) → (𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
405, 38, 39syl2anc 586 . . . . . . . . . 10 (𝜑 → (𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
4140notbid 320 . . . . . . . . 9 (𝜑 → (¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ¬ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
42 alinexa 1839 . . . . . . . . 9 (∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵) ↔ ¬ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵))
4341, 42syl6rbbr 292 . . . . . . . 8 (𝜑 → (∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵) ↔ ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
4431, 43sylibd 241 . . . . . . 7 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
45 brdif 5112 . . . . . . . 8 (𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵 ↔ (𝑋(t+‘𝐹)𝐵 ∧ ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
4645simplbi2 503 . . . . . . 7 (𝑋(t+‘𝐹)𝐵 → (¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵))
473, 44, 46sylsyld 61 . . . . . 6 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵))
48 trclfvdecomr 40066 . . . . . . . . . . 11 (𝐹 ∈ V → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
4932, 48syl 17 . . . . . . . . . 10 (𝜑 → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
50 uncom 4129 . . . . . . . . . 10 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹)
5149, 50syl6eq 2872 . . . . . . . . 9 (𝜑 → (t+‘𝐹) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
52 eqimss 4023 . . . . . . . . 9 ((t+‘𝐹) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹) → (t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
5351, 52syl 17 . . . . . . . 8 (𝜑 → (t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
54 ssundif 4433 . . . . . . . 8 ((t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹) ↔ ((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹)) ⊆ 𝐹)
5553, 54sylib 220 . . . . . . 7 (𝜑 → ((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹)) ⊆ 𝐹)
5655ssbrd 5102 . . . . . 6 (𝜑 → (𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵𝑋𝐹𝐵))
5747, 56syld 47 . . . . 5 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝑋𝐹𝐵))
58 funbrfv 6711 . . . . 5 (Fun 𝐹 → (𝑋𝐹𝐵 → (𝐹𝑋) = 𝐵))
592, 57, 58sylsyld 61 . . . 4 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → (𝐹𝑋) = 𝐵))
60 eqcom 2828 . . . 4 ((𝐹𝑋) = 𝐵𝐵 = (𝐹𝑋))
6159, 60syl6ib 253 . . 3 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝐵 = (𝐹𝑋)))
62 eqtr3 2843 . . 3 ((𝐴 = (𝐹𝑋) ∧ 𝐵 = (𝐹𝑋)) → 𝐴 = 𝐵)
631, 61, 62syl6an 682 . 2 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))
6463orrd 859 1 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wal 1531   = wceq 1533  wex 1776  wcel 2110  ∃!weu 2649  Vcvv 3495  [wsbc 3772  csb 3883  cdif 3933  cun 3934  wss 3936   class class class wbr 5059  dom cdm 5550  ccom 5554  Rel wrel 5555  Fun wfun 6344  cfv 6350  t+ctcl 14339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-trcl 14341  df-relexp 14374
This theorem is referenced by:  frege126d  40100
  Copyright terms: Public domain W3C validator