Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege124d Structured version   Visualization version   GIF version

Theorem frege124d 43723
Description: If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 43949. (Contributed by RP, 16-Jul-2020.)
Hypotheses
Ref Expression
frege124d.f (𝜑𝐹 ∈ V)
frege124d.x (𝜑𝑋 ∈ dom 𝐹)
frege124d.a (𝜑𝐴 = (𝐹𝑋))
frege124d.xb (𝜑𝑋(t+‘𝐹)𝐵)
frege124d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege124d (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))

Proof of Theorem frege124d
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frege124d.a . . 3 (𝜑𝐴 = (𝐹𝑋))
2 frege124d.fun . . . . 5 (𝜑 → Fun 𝐹)
3 frege124d.xb . . . . . . 7 (𝜑𝑋(t+‘𝐹)𝐵)
41eqcomd 2746 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) = 𝐴)
5 frege124d.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ dom 𝐹)
6 funbrfvb 6975 . . . . . . . . . . . 12 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹𝑋) = 𝐴𝑋𝐹𝐴))
72, 5, 6syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑋) = 𝐴𝑋𝐹𝐴))
84, 7mpbid 232 . . . . . . . . . 10 (𝜑𝑋𝐹𝐴)
9 funeu 6603 . . . . . . . . . 10 ((Fun 𝐹𝑋𝐹𝐴) → ∃!𝑎 𝑋𝐹𝑎)
102, 8, 9syl2anc 583 . . . . . . . . 9 (𝜑 → ∃!𝑎 𝑋𝐹𝑎)
11 fvex 6933 . . . . . . . . . . . . 13 (𝐹𝑋) ∈ V
121, 11eqeltrdi 2852 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
13 sbcan 3857 . . . . . . . . . . . . 13 ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ ([𝐴 / 𝑎]𝑋𝐹𝑎[𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵))
14 sbcbr2g 5224 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑋𝐹𝑎𝑋𝐹𝐴 / 𝑎𝑎))
15 csbvarg 4457 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → 𝐴 / 𝑎𝑎 = 𝐴)
1615breq2d 5178 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (𝑋𝐹𝐴 / 𝑎𝑎𝑋𝐹𝐴))
1714, 16bitrd 279 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑋𝐹𝑎𝑋𝐹𝐴))
18 sbcng 3855 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ([𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵 ↔ ¬ [𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵))
19 sbcbr1g 5223 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵𝐴 / 𝑎𝑎(t+‘𝐹)𝐵))
2015breq1d 5176 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → (𝐴 / 𝑎𝑎(t+‘𝐹)𝐵𝐴(t+‘𝐹)𝐵))
2119, 20bitrd 279 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵𝐴(t+‘𝐹)𝐵))
2221notbid 318 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (¬ [𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵 ↔ ¬ 𝐴(t+‘𝐹)𝐵))
2318, 22bitrd 279 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ([𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵 ↔ ¬ 𝐴(t+‘𝐹)𝐵))
2417, 23anbi12d 631 . . . . . . . . . . . . 13 (𝐴 ∈ V → (([𝐴 / 𝑎]𝑋𝐹𝑎[𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
2513, 24bitrid 283 . . . . . . . . . . . 12 (𝐴 ∈ V → ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
2612, 25syl 17 . . . . . . . . . . 11 (𝜑 → ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
27 spesbc 3904 . . . . . . . . . . 11 ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵))
2826, 27biimtrrdi 254 . . . . . . . . . 10 (𝜑 → ((𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵) → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)))
298, 28mpand 694 . . . . . . . . 9 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)))
30 eupicka 2637 . . . . . . . . 9 ((∃!𝑎 𝑋𝐹𝑎 ∧ ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)) → ∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵))
3110, 29, 30syl6an 683 . . . . . . . 8 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵)))
32 alinexa 1841 . . . . . . . . 9 (∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵) ↔ ¬ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵))
33 frege124d.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
34 funrel 6595 . . . . . . . . . . . . . 14 (Fun 𝐹 → Rel 𝐹)
352, 34syl 17 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
36 reltrclfv 15066 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
3733, 35, 36syl2anc 583 . . . . . . . . . . . 12 (𝜑 → Rel (t+‘𝐹))
38 brrelex2 5754 . . . . . . . . . . . 12 ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐵) → 𝐵 ∈ V)
3937, 3, 38syl2anc 583 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
40 brcog 5891 . . . . . . . . . . 11 ((𝑋 ∈ dom 𝐹𝐵 ∈ V) → (𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
415, 39, 40syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
4241notbid 318 . . . . . . . . 9 (𝜑 → (¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ¬ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
4332, 42bitr4id 290 . . . . . . . 8 (𝜑 → (∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵) ↔ ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
4431, 43sylibd 239 . . . . . . 7 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
45 brdif 5219 . . . . . . . 8 (𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵 ↔ (𝑋(t+‘𝐹)𝐵 ∧ ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
4645simplbi2 500 . . . . . . 7 (𝑋(t+‘𝐹)𝐵 → (¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵))
473, 44, 46sylsyld 61 . . . . . 6 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵))
48 trclfvdecomr 43690 . . . . . . . . . . 11 (𝐹 ∈ V → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
4933, 48syl 17 . . . . . . . . . 10 (𝜑 → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
50 uncom 4181 . . . . . . . . . 10 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹)
5149, 50eqtrdi 2796 . . . . . . . . 9 (𝜑 → (t+‘𝐹) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
52 eqimss 4067 . . . . . . . . 9 ((t+‘𝐹) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹) → (t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
5351, 52syl 17 . . . . . . . 8 (𝜑 → (t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
54 ssundif 4511 . . . . . . . 8 ((t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹) ↔ ((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹)) ⊆ 𝐹)
5553, 54sylib 218 . . . . . . 7 (𝜑 → ((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹)) ⊆ 𝐹)
5655ssbrd 5209 . . . . . 6 (𝜑 → (𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵𝑋𝐹𝐵))
5747, 56syld 47 . . . . 5 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝑋𝐹𝐵))
58 funbrfv 6971 . . . . 5 (Fun 𝐹 → (𝑋𝐹𝐵 → (𝐹𝑋) = 𝐵))
592, 57, 58sylsyld 61 . . . 4 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → (𝐹𝑋) = 𝐵))
60 eqcom 2747 . . . 4 ((𝐹𝑋) = 𝐵𝐵 = (𝐹𝑋))
6159, 60imbitrdi 251 . . 3 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝐵 = (𝐹𝑋)))
62 eqtr3 2766 . . 3 ((𝐴 = (𝐹𝑋) ∧ 𝐵 = (𝐹𝑋)) → 𝐴 = 𝐵)
631, 61, 62syl6an 683 . 2 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))
6463orrd 862 1 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  Vcvv 3488  [wsbc 3804  csb 3921  cdif 3973  cun 3974  wss 3976   class class class wbr 5166  dom cdm 5700  ccom 5704  Rel wrel 5705  Fun wfun 6567  cfv 6573  t+ctcl 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-trcl 15036  df-relexp 15069
This theorem is referenced by:  frege126d  43724
  Copyright terms: Public domain W3C validator