Step | Hyp | Ref
| Expression |
1 | | frege124d.a |
. . 3
⊢ (𝜑 → 𝐴 = (𝐹‘𝑋)) |
2 | | frege124d.fun |
. . . . 5
⊢ (𝜑 → Fun 𝐹) |
3 | | frege124d.xb |
. . . . . . 7
⊢ (𝜑 → 𝑋(t+‘𝐹)𝐵) |
4 | 1 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝑋) = 𝐴) |
5 | | frege124d.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ dom 𝐹) |
6 | | funbrfvb 6806 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑋 ∈ dom 𝐹) → ((𝐹‘𝑋) = 𝐴 ↔ 𝑋𝐹𝐴)) |
7 | 2, 5, 6 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹‘𝑋) = 𝐴 ↔ 𝑋𝐹𝐴)) |
8 | 4, 7 | mpbid 231 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋𝐹𝐴) |
9 | | funeu 6443 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑋𝐹𝐴) → ∃!𝑎 𝑋𝐹𝑎) |
10 | 2, 8, 9 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ∃!𝑎 𝑋𝐹𝑎) |
11 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢ (𝐹‘𝑋) ∈ V |
12 | 1, 11 | eqeltrdi 2847 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ V) |
13 | | sbcan 3763 |
. . . . . . . . . . . . 13
⊢
([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ ([𝐴 / 𝑎]𝑋𝐹𝑎 ∧ [𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵)) |
14 | | sbcbr2g 5128 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ V → ([𝐴 / 𝑎]𝑋𝐹𝑎 ↔ 𝑋𝐹⦋𝐴 / 𝑎⦌𝑎)) |
15 | | csbvarg 4362 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ V →
⦋𝐴 / 𝑎⦌𝑎 = 𝐴) |
16 | 15 | breq2d 5082 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ V → (𝑋𝐹⦋𝐴 / 𝑎⦌𝑎 ↔ 𝑋𝐹𝐴)) |
17 | 14, 16 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ V → ([𝐴 / 𝑎]𝑋𝐹𝑎 ↔ 𝑋𝐹𝐴)) |
18 | | sbcng 3761 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ V → ([𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵 ↔ ¬ [𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵)) |
19 | | sbcbr1g 5127 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ V → ([𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵 ↔ ⦋𝐴 / 𝑎⦌𝑎(t+‘𝐹)𝐵)) |
20 | 15 | breq1d 5080 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ V →
(⦋𝐴 / 𝑎⦌𝑎(t+‘𝐹)𝐵 ↔ 𝐴(t+‘𝐹)𝐵)) |
21 | 19, 20 | bitrd 278 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ V → ([𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵 ↔ 𝐴(t+‘𝐹)𝐵)) |
22 | 21 | notbid 317 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ V → (¬
[𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵 ↔ ¬ 𝐴(t+‘𝐹)𝐵)) |
23 | 18, 22 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ V → ([𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵 ↔ ¬ 𝐴(t+‘𝐹)𝐵)) |
24 | 17, 23 | anbi12d 630 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ V → (([𝐴 / 𝑎]𝑋𝐹𝑎 ∧ [𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵))) |
25 | 13, 24 | syl5bb 282 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V → ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵))) |
26 | 12, 25 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵))) |
27 | | spesbc 3811 |
. . . . . . . . . . 11
⊢
([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)) |
28 | 26, 27 | syl6bir 253 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵) → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵))) |
29 | 8, 28 | mpand 691 |
. . . . . . . . 9
⊢ (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵))) |
30 | | eupicka 2636 |
. . . . . . . . 9
⊢
((∃!𝑎 𝑋𝐹𝑎 ∧ ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)) → ∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵)) |
31 | 10, 29, 30 | syl6an 680 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵))) |
32 | | alinexa 1846 |
. . . . . . . . 9
⊢
(∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵) ↔ ¬ ∃𝑎(𝑋𝐹𝑎 ∧ 𝑎(t+‘𝐹)𝐵)) |
33 | | frege124d.f |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ V) |
34 | | funrel 6435 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐹 → Rel 𝐹) |
35 | 2, 34 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Rel 𝐹) |
36 | | reltrclfv 14656 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹)) |
37 | 33, 35, 36 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → Rel (t+‘𝐹)) |
38 | | brrelex2 5632 |
. . . . . . . . . . . 12
⊢ ((Rel
(t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐵) → 𝐵 ∈ V) |
39 | 37, 3, 38 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ V) |
40 | | brcog 5764 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ dom 𝐹 ∧ 𝐵 ∈ V) → (𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ∃𝑎(𝑋𝐹𝑎 ∧ 𝑎(t+‘𝐹)𝐵))) |
41 | 5, 39, 40 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ∃𝑎(𝑋𝐹𝑎 ∧ 𝑎(t+‘𝐹)𝐵))) |
42 | 41 | notbid 317 |
. . . . . . . . 9
⊢ (𝜑 → (¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ¬ ∃𝑎(𝑋𝐹𝑎 ∧ 𝑎(t+‘𝐹)𝐵))) |
43 | 32, 42 | bitr4id 289 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵) ↔ ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵)) |
44 | 31, 43 | sylibd 238 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵)) |
45 | | brdif 5123 |
. . . . . . . 8
⊢ (𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵 ↔ (𝑋(t+‘𝐹)𝐵 ∧ ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵)) |
46 | 45 | simplbi2 500 |
. . . . . . 7
⊢ (𝑋(t+‘𝐹)𝐵 → (¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵 → 𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵)) |
47 | 3, 44, 46 | sylsyld 61 |
. . . . . 6
⊢ (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → 𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵)) |
48 | | trclfvdecomr 41225 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ V → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹))) |
49 | 33, 48 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹))) |
50 | | uncom 4083 |
. . . . . . . . . 10
⊢ (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹) |
51 | 49, 50 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝜑 → (t+‘𝐹) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹)) |
52 | | eqimss 3973 |
. . . . . . . . 9
⊢
((t+‘𝐹) =
(((t+‘𝐹) ∘
𝐹) ∪ 𝐹) → (t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹)) |
53 | 51, 52 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹)) |
54 | | ssundif 4415 |
. . . . . . . 8
⊢
((t+‘𝐹)
⊆ (((t+‘𝐹)
∘ 𝐹) ∪ 𝐹) ↔ ((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹)) ⊆ 𝐹) |
55 | 53, 54 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → ((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹)) ⊆ 𝐹) |
56 | 55 | ssbrd 5113 |
. . . . . 6
⊢ (𝜑 → (𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵 → 𝑋𝐹𝐵)) |
57 | 47, 56 | syld 47 |
. . . . 5
⊢ (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → 𝑋𝐹𝐵)) |
58 | | funbrfv 6802 |
. . . . 5
⊢ (Fun
𝐹 → (𝑋𝐹𝐵 → (𝐹‘𝑋) = 𝐵)) |
59 | 2, 57, 58 | sylsyld 61 |
. . . 4
⊢ (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → (𝐹‘𝑋) = 𝐵)) |
60 | | eqcom 2745 |
. . . 4
⊢ ((𝐹‘𝑋) = 𝐵 ↔ 𝐵 = (𝐹‘𝑋)) |
61 | 59, 60 | syl6ib 250 |
. . 3
⊢ (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → 𝐵 = (𝐹‘𝑋))) |
62 | | eqtr3 2764 |
. . 3
⊢ ((𝐴 = (𝐹‘𝑋) ∧ 𝐵 = (𝐹‘𝑋)) → 𝐴 = 𝐵) |
63 | 1, 61, 62 | syl6an 680 |
. 2
⊢ (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → 𝐴 = 𝐵)) |
64 | 63 | orrd 859 |
1
⊢ (𝜑 → (𝐴(t+‘𝐹)𝐵 ∨ 𝐴 = 𝐵)) |