Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege124d Structured version   Visualization version   GIF version

Theorem frege124d 43750
Description: If 𝐹 is a function, 𝐴 is the successor of 𝑋, and 𝐵 follows 𝑋 in the transitive closure of 𝐹, then 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝐹. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 43976. (Contributed by RP, 16-Jul-2020.)
Hypotheses
Ref Expression
frege124d.f (𝜑𝐹 ∈ V)
frege124d.x (𝜑𝑋 ∈ dom 𝐹)
frege124d.a (𝜑𝐴 = (𝐹𝑋))
frege124d.xb (𝜑𝑋(t+‘𝐹)𝐵)
frege124d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege124d (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))

Proof of Theorem frege124d
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frege124d.a . . 3 (𝜑𝐴 = (𝐹𝑋))
2 frege124d.fun . . . . 5 (𝜑 → Fun 𝐹)
3 frege124d.xb . . . . . . 7 (𝜑𝑋(t+‘𝐹)𝐵)
41eqcomd 2735 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) = 𝐴)
5 frege124d.x . . . . . . . . . . . 12 (𝜑𝑋 ∈ dom 𝐹)
6 funbrfvb 6914 . . . . . . . . . . . 12 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹𝑋) = 𝐴𝑋𝐹𝐴))
72, 5, 6syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑋) = 𝐴𝑋𝐹𝐴))
84, 7mpbid 232 . . . . . . . . . 10 (𝜑𝑋𝐹𝐴)
9 funeu 6541 . . . . . . . . . 10 ((Fun 𝐹𝑋𝐹𝐴) → ∃!𝑎 𝑋𝐹𝑎)
102, 8, 9syl2anc 584 . . . . . . . . 9 (𝜑 → ∃!𝑎 𝑋𝐹𝑎)
11 fvex 6871 . . . . . . . . . . . . 13 (𝐹𝑋) ∈ V
121, 11eqeltrdi 2836 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
13 sbcan 3803 . . . . . . . . . . . . 13 ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ ([𝐴 / 𝑎]𝑋𝐹𝑎[𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵))
14 sbcbr2g 5165 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑋𝐹𝑎𝑋𝐹𝐴 / 𝑎𝑎))
15 csbvarg 4397 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → 𝐴 / 𝑎𝑎 = 𝐴)
1615breq2d 5119 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (𝑋𝐹𝐴 / 𝑎𝑎𝑋𝐹𝐴))
1714, 16bitrd 279 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑋𝐹𝑎𝑋𝐹𝐴))
18 sbcng 3801 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → ([𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵 ↔ ¬ [𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵))
19 sbcbr1g 5164 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵𝐴 / 𝑎𝑎(t+‘𝐹)𝐵))
2015breq1d 5117 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ V → (𝐴 / 𝑎𝑎(t+‘𝐹)𝐵𝐴(t+‘𝐹)𝐵))
2119, 20bitrd 279 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → ([𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵𝐴(t+‘𝐹)𝐵))
2221notbid 318 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (¬ [𝐴 / 𝑎]𝑎(t+‘𝐹)𝐵 ↔ ¬ 𝐴(t+‘𝐹)𝐵))
2318, 22bitrd 279 . . . . . . . . . . . . . 14 (𝐴 ∈ V → ([𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵 ↔ ¬ 𝐴(t+‘𝐹)𝐵))
2417, 23anbi12d 632 . . . . . . . . . . . . 13 (𝐴 ∈ V → (([𝐴 / 𝑎]𝑋𝐹𝑎[𝐴 / 𝑎] ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
2513, 24bitrid 283 . . . . . . . . . . . 12 (𝐴 ∈ V → ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
2612, 25syl 17 . . . . . . . . . . 11 (𝜑 → ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) ↔ (𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵)))
27 spesbc 3845 . . . . . . . . . . 11 ([𝐴 / 𝑎](𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵) → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵))
2826, 27biimtrrdi 254 . . . . . . . . . 10 (𝜑 → ((𝑋𝐹𝐴 ∧ ¬ 𝐴(t+‘𝐹)𝐵) → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)))
298, 28mpand 695 . . . . . . . . 9 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)))
30 eupicka 2627 . . . . . . . . 9 ((∃!𝑎 𝑋𝐹𝑎 ∧ ∃𝑎(𝑋𝐹𝑎 ∧ ¬ 𝑎(t+‘𝐹)𝐵)) → ∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵))
3110, 29, 30syl6an 684 . . . . . . . 8 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵)))
32 alinexa 1843 . . . . . . . . 9 (∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵) ↔ ¬ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵))
33 frege124d.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ V)
34 funrel 6533 . . . . . . . . . . . . . 14 (Fun 𝐹 → Rel 𝐹)
352, 34syl 17 . . . . . . . . . . . . 13 (𝜑 → Rel 𝐹)
36 reltrclfv 14983 . . . . . . . . . . . . 13 ((𝐹 ∈ V ∧ Rel 𝐹) → Rel (t+‘𝐹))
3733, 35, 36syl2anc 584 . . . . . . . . . . . 12 (𝜑 → Rel (t+‘𝐹))
38 brrelex2 5692 . . . . . . . . . . . 12 ((Rel (t+‘𝐹) ∧ 𝑋(t+‘𝐹)𝐵) → 𝐵 ∈ V)
3937, 3, 38syl2anc 584 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
40 brcog 5830 . . . . . . . . . . 11 ((𝑋 ∈ dom 𝐹𝐵 ∈ V) → (𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
415, 39, 40syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
4241notbid 318 . . . . . . . . 9 (𝜑 → (¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵 ↔ ¬ ∃𝑎(𝑋𝐹𝑎𝑎(t+‘𝐹)𝐵)))
4332, 42bitr4id 290 . . . . . . . 8 (𝜑 → (∀𝑎(𝑋𝐹𝑎 → ¬ 𝑎(t+‘𝐹)𝐵) ↔ ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
4431, 43sylibd 239 . . . . . . 7 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
45 brdif 5160 . . . . . . . 8 (𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵 ↔ (𝑋(t+‘𝐹)𝐵 ∧ ¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵))
4645simplbi2 500 . . . . . . 7 (𝑋(t+‘𝐹)𝐵 → (¬ 𝑋((t+‘𝐹) ∘ 𝐹)𝐵𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵))
473, 44, 46sylsyld 61 . . . . . 6 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵))
48 trclfvdecomr 43717 . . . . . . . . . . 11 (𝐹 ∈ V → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
4933, 48syl 17 . . . . . . . . . 10 (𝜑 → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
50 uncom 4121 . . . . . . . . . 10 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹)
5149, 50eqtrdi 2780 . . . . . . . . 9 (𝜑 → (t+‘𝐹) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
52 eqimss 4005 . . . . . . . . 9 ((t+‘𝐹) = (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹) → (t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
5351, 52syl 17 . . . . . . . 8 (𝜑 → (t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹))
54 ssundif 4451 . . . . . . . 8 ((t+‘𝐹) ⊆ (((t+‘𝐹) ∘ 𝐹) ∪ 𝐹) ↔ ((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹)) ⊆ 𝐹)
5553, 54sylib 218 . . . . . . 7 (𝜑 → ((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹)) ⊆ 𝐹)
5655ssbrd 5150 . . . . . 6 (𝜑 → (𝑋((t+‘𝐹) ∖ ((t+‘𝐹) ∘ 𝐹))𝐵𝑋𝐹𝐵))
5747, 56syld 47 . . . . 5 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝑋𝐹𝐵))
58 funbrfv 6909 . . . . 5 (Fun 𝐹 → (𝑋𝐹𝐵 → (𝐹𝑋) = 𝐵))
592, 57, 58sylsyld 61 . . . 4 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵 → (𝐹𝑋) = 𝐵))
60 eqcom 2736 . . . 4 ((𝐹𝑋) = 𝐵𝐵 = (𝐹𝑋))
6159, 60imbitrdi 251 . . 3 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝐵 = (𝐹𝑋)))
62 eqtr3 2751 . . 3 ((𝐴 = (𝐹𝑋) ∧ 𝐵 = (𝐹𝑋)) → 𝐴 = 𝐵)
631, 61, 62syl6an 684 . 2 (𝜑 → (¬ 𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))
6463orrd 863 1 (𝜑 → (𝐴(t+‘𝐹)𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  Vcvv 3447  [wsbc 3753  csb 3862  cdif 3911  cun 3912  wss 3914   class class class wbr 5107  dom cdm 5638  ccom 5642  Rel wrel 5643  Fun wfun 6505  cfv 6511  t+ctcl 14951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-trcl 14953  df-relexp 14986
This theorem is referenced by:  frege126d  43751
  Copyright terms: Public domain W3C validator