Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbaniota Structured version   Visualization version   GIF version

Theorem sbaniota 44447
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
sbaniota (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓))

Proof of Theorem sbaniota
StepHypRef Expression
1 eupickbi 2630 . 2 (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜓)))
2 sbiota1 44446 . 2 (∃!𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓))
31, 2bitrd 279 1 (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  ∃!weu 2562  [wsbc 3739  cio 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-v 3436  df-sbc 3740  df-un 3905  df-ss 3917  df-sn 4575  df-pr 4577  df-uni 4858  df-iota 6433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator