Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbaniota Structured version   Visualization version   GIF version

Theorem sbaniota 44533
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
sbaniota (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓))

Proof of Theorem sbaniota
StepHypRef Expression
1 eupickbi 2631 . 2 (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜓)))
2 sbiota1 44532 . 2 (∃!𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓))
31, 2bitrd 279 1 (∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  ∃!weu 2563  [wsbc 3736  cio 6441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-v 3438  df-sbc 3737  df-un 3902  df-ss 3914  df-sn 4576  df-pr 4578  df-uni 4859  df-iota 6443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator