MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-br Structured version   Visualization version   GIF version

Theorem ex-br 28931
Description: Example for df-br 5088. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-br (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → 3𝑅9)

Proof of Theorem ex-br
StepHypRef Expression
1 opex 5398 . . . 4 ⟨3, 9⟩ ∈ V
21prid2 4709 . . 3 ⟨3, 9⟩ ∈ {⟨2, 6⟩, ⟨3, 9⟩}
3 id 22 . . 3 (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → 𝑅 = {⟨2, 6⟩, ⟨3, 9⟩})
42, 3eleqtrrid 2845 . 2 (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → ⟨3, 9⟩ ∈ 𝑅)
5 df-br 5088 . 2 (3𝑅9 ↔ ⟨3, 9⟩ ∈ 𝑅)
64, 5sylibr 233 1 (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → 3𝑅9)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {cpr 4573  cop 4577   class class class wbr 5087  2c2 12108  3c3 12109  6c6 12112  9c9 12115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator