![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-br | Structured version Visualization version GIF version |
Description: Example for df-br 5149. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-br | ⊢ (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → 3𝑅9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5464 | . . . 4 ⊢ ⟨3, 9⟩ ∈ V | |
2 | 1 | prid2 4767 | . . 3 ⊢ ⟨3, 9⟩ ∈ {⟨2, 6⟩, ⟨3, 9⟩} |
3 | id 22 | . . 3 ⊢ (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → 𝑅 = {⟨2, 6⟩, ⟨3, 9⟩}) | |
4 | 2, 3 | eleqtrrid 2840 | . 2 ⊢ (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → ⟨3, 9⟩ ∈ 𝑅) |
5 | df-br 5149 | . 2 ⊢ (3𝑅9 ↔ ⟨3, 9⟩ ∈ 𝑅) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → 3𝑅9) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {cpr 4630 ⟨cop 4634 class class class wbr 5148 2c2 12266 3c3 12267 6c6 12270 9c9 12273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |