Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-br | Structured version Visualization version GIF version |
Description: Example for df-br 5088. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-br | ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5398 | . . . 4 ⊢ 〈3, 9〉 ∈ V | |
2 | 1 | prid2 4709 | . . 3 ⊢ 〈3, 9〉 ∈ {〈2, 6〉, 〈3, 9〉} |
3 | id 22 | . . 3 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 𝑅 = {〈2, 6〉, 〈3, 9〉}) | |
4 | 2, 3 | eleqtrrid 2845 | . 2 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 〈3, 9〉 ∈ 𝑅) |
5 | df-br 5088 | . 2 ⊢ (3𝑅9 ↔ 〈3, 9〉 ∈ 𝑅) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {cpr 4573 〈cop 4577 class class class wbr 5087 2c2 12108 3c3 12109 6c6 12112 9c9 12115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |