![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-br | Structured version Visualization version GIF version |
Description: Example for df-br 5167. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-br | ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5484 | . . . 4 ⊢ 〈3, 9〉 ∈ V | |
2 | 1 | prid2 4788 | . . 3 ⊢ 〈3, 9〉 ∈ {〈2, 6〉, 〈3, 9〉} |
3 | id 22 | . . 3 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 𝑅 = {〈2, 6〉, 〈3, 9〉}) | |
4 | 2, 3 | eleqtrrid 2851 | . 2 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 〈3, 9〉 ∈ 𝑅) |
5 | df-br 5167 | . 2 ⊢ (3𝑅9 ↔ 〈3, 9〉 ∈ 𝑅) | |
6 | 4, 5 | sylibr 234 | 1 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {cpr 4650 〈cop 4654 class class class wbr 5166 2c2 12348 3c3 12349 6c6 12352 9c9 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |