| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-br | Structured version Visualization version GIF version | ||
| Description: Example for df-br 5108. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-br | ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5424 | . . . 4 ⊢ 〈3, 9〉 ∈ V | |
| 2 | 1 | prid2 4727 | . . 3 ⊢ 〈3, 9〉 ∈ {〈2, 6〉, 〈3, 9〉} |
| 3 | id 22 | . . 3 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 𝑅 = {〈2, 6〉, 〈3, 9〉}) | |
| 4 | 2, 3 | eleqtrrid 2835 | . 2 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 〈3, 9〉 ∈ 𝑅) |
| 5 | df-br 5108 | . 2 ⊢ (3𝑅9 ↔ 〈3, 9〉 ∈ 𝑅) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cpr 4591 〈cop 4595 class class class wbr 5107 2c2 12241 3c3 12242 6c6 12245 9c9 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |