![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-br | Structured version Visualization version GIF version |
Description: Example for df-br 5150. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-br | ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5466 | . . . 4 ⊢ 〈3, 9〉 ∈ V | |
2 | 1 | prid2 4769 | . . 3 ⊢ 〈3, 9〉 ∈ {〈2, 6〉, 〈3, 9〉} |
3 | id 22 | . . 3 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 𝑅 = {〈2, 6〉, 〈3, 9〉}) | |
4 | 2, 3 | eleqtrrid 2832 | . 2 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 〈3, 9〉 ∈ 𝑅) |
5 | df-br 5150 | . 2 ⊢ (3𝑅9 ↔ 〈3, 9〉 ∈ 𝑅) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝑅 = {〈2, 6〉, 〈3, 9〉} → 3𝑅9) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {cpr 4632 〈cop 4636 class class class wbr 5149 2c2 12300 3c3 12301 6c6 12304 9c9 12307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |