Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-opab Structured version   Visualization version   GIF version

Theorem ex-opab 28221
 Description: Example for df-opab 5096. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-opab (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem ex-opab
StepHypRef Expression
1 3cn 11710 . . 3 3 ∈ ℂ
2 4cn 11714 . . 3 4 ∈ ℂ
3 3p1e4 11774 . . 3 (3 + 1) = 4
41elexi 3463 . . . 4 3 ∈ V
52elexi 3463 . . . 4 4 ∈ V
6 eleq1 2880 . . . . 5 (𝑥 = 3 → (𝑥 ∈ ℂ ↔ 3 ∈ ℂ))
7 oveq1 7146 . . . . . 6 (𝑥 = 3 → (𝑥 + 1) = (3 + 1))
87eqeq1d 2803 . . . . 5 (𝑥 = 3 → ((𝑥 + 1) = 𝑦 ↔ (3 + 1) = 𝑦))
96, 83anbi13d 1435 . . . 4 (𝑥 = 3 → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦)))
10 eleq1 2880 . . . . 5 (𝑦 = 4 → (𝑦 ∈ ℂ ↔ 4 ∈ ℂ))
11 eqeq2 2813 . . . . 5 (𝑦 = 4 → ((3 + 1) = 𝑦 ↔ (3 + 1) = 4))
1210, 113anbi23d 1436 . . . 4 (𝑦 = 4 → ((3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4)))
13 eqid 2801 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}
144, 5, 9, 12, 13brab 5398 . . 3 (3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4 ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4))
151, 2, 3, 14mpbir3an 1338 . 2 3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4
16 breq 5035 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → (3𝑅4 ↔ 3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4))
1715, 16mpbiri 261 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   class class class wbr 5033  {copab 5095  (class class class)co 7139  ℂcc 10528  1c1 10531   + caddc 10533  3c3 11685  4c4 11686 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298  ax-1cn 10588  ax-addcl 10590 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-iota 6287  df-fv 6336  df-ov 7142  df-2 11692  df-3 11693  df-4 11694 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator