MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-opab Structured version   Visualization version   GIF version

Theorem ex-opab 30451
Description: Example for df-opab 5206. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-opab (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)

Proof of Theorem ex-opab
StepHypRef Expression
1 3cn 12347 . . 3 3 ∈ ℂ
2 4cn 12351 . . 3 4 ∈ ℂ
3 3p1e4 12411 . . 3 (3 + 1) = 4
41elexi 3503 . . . 4 3 ∈ V
52elexi 3503 . . . 4 4 ∈ V
6 eleq1 2829 . . . . 5 (𝑥 = 3 → (𝑥 ∈ ℂ ↔ 3 ∈ ℂ))
7 oveq1 7438 . . . . . 6 (𝑥 = 3 → (𝑥 + 1) = (3 + 1))
87eqeq1d 2739 . . . . 5 (𝑥 = 3 → ((𝑥 + 1) = 𝑦 ↔ (3 + 1) = 𝑦))
96, 83anbi13d 1440 . . . 4 (𝑥 = 3 → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦)))
10 eleq1 2829 . . . . 5 (𝑦 = 4 → (𝑦 ∈ ℂ ↔ 4 ∈ ℂ))
11 eqeq2 2749 . . . . 5 (𝑦 = 4 → ((3 + 1) = 𝑦 ↔ (3 + 1) = 4))
1210, 113anbi23d 1441 . . . 4 (𝑦 = 4 → ((3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4)))
13 eqid 2737 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}
144, 5, 9, 12, 13brab 5548 . . 3 (3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4 ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4))
151, 2, 3, 14mpbir3an 1342 . 2 3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4
16 breq 5145 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → (3𝑅4 ↔ 3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4))
1715, 16mpbiri 258 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  {copab 5205  (class class class)co 7431  cc 11153  1c1 11156   + caddc 11158  3c3 12322  4c4 12323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-iota 6514  df-fv 6569  df-ov 7434  df-2 12329  df-3 12330  df-4 12331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator