Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-opab | Structured version Visualization version GIF version |
Description: Example for df-opab 5148. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-opab | ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 12124 | . . 3 ⊢ 3 ∈ ℂ | |
2 | 4cn 12128 | . . 3 ⊢ 4 ∈ ℂ | |
3 | 3p1e4 12188 | . . 3 ⊢ (3 + 1) = 4 | |
4 | 1 | elexi 3460 | . . . 4 ⊢ 3 ∈ V |
5 | 2 | elexi 3460 | . . . 4 ⊢ 4 ∈ V |
6 | eleq1 2825 | . . . . 5 ⊢ (𝑥 = 3 → (𝑥 ∈ ℂ ↔ 3 ∈ ℂ)) | |
7 | oveq1 7320 | . . . . . 6 ⊢ (𝑥 = 3 → (𝑥 + 1) = (3 + 1)) | |
8 | 7 | eqeq1d 2739 | . . . . 5 ⊢ (𝑥 = 3 → ((𝑥 + 1) = 𝑦 ↔ (3 + 1) = 𝑦)) |
9 | 6, 8 | 3anbi13d 1437 | . . . 4 ⊢ (𝑥 = 3 → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦))) |
10 | eleq1 2825 | . . . . 5 ⊢ (𝑦 = 4 → (𝑦 ∈ ℂ ↔ 4 ∈ ℂ)) | |
11 | eqeq2 2749 | . . . . 5 ⊢ (𝑦 = 4 → ((3 + 1) = 𝑦 ↔ (3 + 1) = 4)) | |
12 | 10, 11 | 3anbi23d 1438 | . . . 4 ⊢ (𝑦 = 4 → ((3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4))) |
13 | eqid 2737 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} | |
14 | 4, 5, 9, 12, 13 | brab 5474 | . . 3 ⊢ (3{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4 ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4)) |
15 | 1, 2, 3, 14 | mpbir3an 1340 | . 2 ⊢ 3{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4 |
16 | breq 5087 | . 2 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → (3𝑅4 ↔ 3{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4)) | |
17 | 15, 16 | mpbiri 257 | 1 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5085 {copab 5147 (class class class)co 7313 ℂcc 10939 1c1 10942 + caddc 10944 3c3 12099 4c4 12100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 ax-1cn 10999 ax-addcl 11001 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-iota 6415 df-fv 6471 df-ov 7316 df-2 12106 df-3 12107 df-4 12108 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |