![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-opab | Structured version Visualization version GIF version |
Description: Example for df-opab 5212. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-opab | ⊢ (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 12293 | . . 3 ⊢ 3 ∈ ℂ | |
2 | 4cn 12297 | . . 3 ⊢ 4 ∈ ℂ | |
3 | 3p1e4 12357 | . . 3 ⊢ (3 + 1) = 4 | |
4 | 1 | elexi 3494 | . . . 4 ⊢ 3 ∈ V |
5 | 2 | elexi 3494 | . . . 4 ⊢ 4 ∈ V |
6 | eleq1 2822 | . . . . 5 ⊢ (𝑥 = 3 → (𝑥 ∈ ℂ ↔ 3 ∈ ℂ)) | |
7 | oveq1 7416 | . . . . . 6 ⊢ (𝑥 = 3 → (𝑥 + 1) = (3 + 1)) | |
8 | 7 | eqeq1d 2735 | . . . . 5 ⊢ (𝑥 = 3 → ((𝑥 + 1) = 𝑦 ↔ (3 + 1) = 𝑦)) |
9 | 6, 8 | 3anbi13d 1439 | . . . 4 ⊢ (𝑥 = 3 → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦))) |
10 | eleq1 2822 | . . . . 5 ⊢ (𝑦 = 4 → (𝑦 ∈ ℂ ↔ 4 ∈ ℂ)) | |
11 | eqeq2 2745 | . . . . 5 ⊢ (𝑦 = 4 → ((3 + 1) = 𝑦 ↔ (3 + 1) = 4)) | |
12 | 10, 11 | 3anbi23d 1440 | . . . 4 ⊢ (𝑦 = 4 → ((3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4))) |
13 | eqid 2733 | . . . 4 ⊢ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} | |
14 | 4, 5, 9, 12, 13 | brab 5544 | . . 3 ⊢ (3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4 ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4)) |
15 | 1, 2, 3, 14 | mpbir3an 1342 | . 2 ⊢ 3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4 |
16 | breq 5151 | . 2 ⊢ (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → (3𝑅4 ↔ 3{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4)) | |
17 | 15, 16 | mpbiri 258 | 1 ⊢ (𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 {copab 5211 (class class class)co 7409 ℂcc 11108 1c1 11111 + caddc 11113 3c3 12268 4c4 12269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-iota 6496 df-fv 6552 df-ov 7412 df-2 12275 df-3 12276 df-4 12277 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |