Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpw0 Structured version   Visualization version   GIF version

Theorem pwpw0 4704
 Description: Compute the power set of the power set of the empty set. (See pw0 4703 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48. Although this theorem is a special case of pwsn 4791, we have chosen to show a direct elementary proof. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
pwpw0 𝒫 {∅} = {∅, {∅}}

Proof of Theorem pwpw0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss2 3879 . . . . . . . . 9 (𝑥 ⊆ {∅} ↔ ∀𝑦(𝑦𝑥𝑦 ∈ {∅}))
2 velsn 4539 . . . . . . . . . . 11 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
32imbi2i 340 . . . . . . . . . 10 ((𝑦𝑥𝑦 ∈ {∅}) ↔ (𝑦𝑥𝑦 = ∅))
43albii 1822 . . . . . . . . 9 (∀𝑦(𝑦𝑥𝑦 ∈ {∅}) ↔ ∀𝑦(𝑦𝑥𝑦 = ∅))
51, 4bitri 278 . . . . . . . 8 (𝑥 ⊆ {∅} ↔ ∀𝑦(𝑦𝑥𝑦 = ∅))
6 neq0 4245 . . . . . . . . . 10 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
7 exintr 1894 . . . . . . . . . 10 (∀𝑦(𝑦𝑥𝑦 = ∅) → (∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥𝑦 = ∅)))
86, 7syl5bi 245 . . . . . . . . 9 (∀𝑦(𝑦𝑥𝑦 = ∅) → (¬ 𝑥 = ∅ → ∃𝑦(𝑦𝑥𝑦 = ∅)))
9 exancom 1863 . . . . . . . . . . 11 (∃𝑦(𝑦𝑥𝑦 = ∅) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑦𝑥))
10 dfclel 2832 . . . . . . . . . . 11 (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑦𝑥))
119, 10bitr4i 281 . . . . . . . . . 10 (∃𝑦(𝑦𝑥𝑦 = ∅) ↔ ∅ ∈ 𝑥)
12 snssi 4699 . . . . . . . . . 10 (∅ ∈ 𝑥 → {∅} ⊆ 𝑥)
1311, 12sylbi 220 . . . . . . . . 9 (∃𝑦(𝑦𝑥𝑦 = ∅) → {∅} ⊆ 𝑥)
148, 13syl6 35 . . . . . . . 8 (∀𝑦(𝑦𝑥𝑦 = ∅) → (¬ 𝑥 = ∅ → {∅} ⊆ 𝑥))
155, 14sylbi 220 . . . . . . 7 (𝑥 ⊆ {∅} → (¬ 𝑥 = ∅ → {∅} ⊆ 𝑥))
1615anc2li 560 . . . . . 6 (𝑥 ⊆ {∅} → (¬ 𝑥 = ∅ → (𝑥 ⊆ {∅} ∧ {∅} ⊆ 𝑥)))
17 eqss 3908 . . . . . 6 (𝑥 = {∅} ↔ (𝑥 ⊆ {∅} ∧ {∅} ⊆ 𝑥))
1816, 17syl6ibr 255 . . . . 5 (𝑥 ⊆ {∅} → (¬ 𝑥 = ∅ → 𝑥 = {∅}))
1918orrd 861 . . . 4 (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))
20 0ss 4293 . . . . . 6 ∅ ⊆ {∅}
21 sseq1 3918 . . . . . 6 (𝑥 = ∅ → (𝑥 ⊆ {∅} ↔ ∅ ⊆ {∅}))
2220, 21mpbiri 261 . . . . 5 (𝑥 = ∅ → 𝑥 ⊆ {∅})
23 eqimss 3949 . . . . 5 (𝑥 = {∅} → 𝑥 ⊆ {∅})
2422, 23jaoi 855 . . . 4 ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 ⊆ {∅})
2519, 24impbii 212 . . 3 (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
2625abbii 2824 . 2 {𝑥𝑥 ⊆ {∅}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {∅})}
27 df-pw 4497 . 2 𝒫 {∅} = {𝑥𝑥 ⊆ {∅}}
28 dfpr2 4542 . 2 {∅, {∅}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {∅})}
2926, 27, 283eqtr4i 2792 1 𝒫 {∅} = {∅, {∅}}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 400   ∨ wo 845  ∀wal 1537   = wceq 1539  ∃wex 1782   ∈ wcel 2112  {cab 2736   ⊆ wss 3859  ∅c0 4226  𝒫 cpw 4495  {csn 4523  {cpr 4525 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2730 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-v 3412  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-pw 4497  df-sn 4524  df-pr 4526 This theorem is referenced by:  pp0ex  5256  pwdju1  9643  canthp1lem1  10105  rankeq1o  34015  ssoninhaus  34179
 Copyright terms: Public domain W3C validator