| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-ss 3967 | . . . . . . . . 9
⊢ (𝑥 ⊆ {∅} ↔
∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ {∅})) | 
| 2 |  | velsn 4641 | . . . . . . . . . . 11
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) | 
| 3 | 2 | imbi2i 336 | . . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑥 → 𝑦 ∈ {∅}) ↔ (𝑦 ∈ 𝑥 → 𝑦 = ∅)) | 
| 4 | 3 | albii 1818 | . . . . . . . . 9
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ {∅}) ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 = ∅)) | 
| 5 | 1, 4 | bitri 275 | . . . . . . . 8
⊢ (𝑥 ⊆ {∅} ↔
∀𝑦(𝑦 ∈ 𝑥 → 𝑦 = ∅)) | 
| 6 |  | neq0 4351 | . . . . . . . . . 10
⊢ (¬
𝑥 = ∅ ↔
∃𝑦 𝑦 ∈ 𝑥) | 
| 7 |  | exintr 1891 | . . . . . . . . . 10
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 = ∅) → (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑦 = ∅))) | 
| 8 | 6, 7 | biimtrid 242 | . . . . . . . . 9
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 = ∅) → (¬ 𝑥 = ∅ → ∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑦 = ∅))) | 
| 9 |  | exancom 1860 | . . . . . . . . . . 11
⊢
(∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑦 = ∅) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑦 ∈ 𝑥)) | 
| 10 |  | dfclel 2816 | . . . . . . . . . . 11
⊢ (∅
∈ 𝑥 ↔
∃𝑦(𝑦 = ∅ ∧ 𝑦 ∈ 𝑥)) | 
| 11 | 9, 10 | bitr4i 278 | . . . . . . . . . 10
⊢
(∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑦 = ∅) ↔ ∅ ∈ 𝑥) | 
| 12 |  | snssi 4807 | . . . . . . . . . 10
⊢ (∅
∈ 𝑥 → {∅}
⊆ 𝑥) | 
| 13 | 11, 12 | sylbi 217 | . . . . . . . . 9
⊢
(∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑦 = ∅) → {∅} ⊆ 𝑥) | 
| 14 | 8, 13 | syl6 35 | . . . . . . . 8
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 = ∅) → (¬ 𝑥 = ∅ → {∅} ⊆ 𝑥)) | 
| 15 | 5, 14 | sylbi 217 | . . . . . . 7
⊢ (𝑥 ⊆ {∅} → (¬
𝑥 = ∅ →
{∅} ⊆ 𝑥)) | 
| 16 | 15 | anc2li 555 | . . . . . 6
⊢ (𝑥 ⊆ {∅} → (¬
𝑥 = ∅ → (𝑥 ⊆ {∅} ∧
{∅} ⊆ 𝑥))) | 
| 17 |  | eqss 3998 | . . . . . 6
⊢ (𝑥 = {∅} ↔ (𝑥 ⊆ {∅} ∧
{∅} ⊆ 𝑥)) | 
| 18 | 16, 17 | imbitrrdi 252 | . . . . 5
⊢ (𝑥 ⊆ {∅} → (¬
𝑥 = ∅ → 𝑥 = {∅})) | 
| 19 | 18 | orrd 863 | . . . 4
⊢ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})) | 
| 20 |  | 0ss 4399 | . . . . . 6
⊢ ∅
⊆ {∅} | 
| 21 |  | sseq1 4008 | . . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ⊆ {∅} ↔
∅ ⊆ {∅})) | 
| 22 | 20, 21 | mpbiri 258 | . . . . 5
⊢ (𝑥 = ∅ → 𝑥 ⊆
{∅}) | 
| 23 |  | eqimss 4041 | . . . . 5
⊢ (𝑥 = {∅} → 𝑥 ⊆
{∅}) | 
| 24 | 22, 23 | jaoi 857 | . . . 4
⊢ ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 ⊆
{∅}) | 
| 25 | 19, 24 | impbii 209 | . . 3
⊢ (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) | 
| 26 | 25 | abbii 2808 | . 2
⊢ {𝑥 ∣ 𝑥 ⊆ {∅}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {∅})} | 
| 27 |  | df-pw 4601 | . 2
⊢ 𝒫
{∅} = {𝑥 ∣
𝑥 ⊆
{∅}} | 
| 28 |  | dfpr2 4645 | . 2
⊢ {∅,
{∅}} = {𝑥 ∣
(𝑥 = ∅ ∨ 𝑥 = {∅})} | 
| 29 | 26, 27, 28 | 3eqtr4i 2774 | 1
⊢ 𝒫
{∅} = {∅, {∅}} |