MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpw0 Structured version   Visualization version   GIF version

Theorem pwpw0 4743
Description: Compute the power set of the power set of the empty set. (See pw0 4742 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48. Although this theorem is a special case of pwsn 4828, we have chosen to show a direct elementary proof. (Contributed by NM, 7-Aug-1994.)
Assertion
Ref Expression
pwpw0 𝒫 {∅} = {∅, {∅}}

Proof of Theorem pwpw0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss2 3903 . . . . . . . . 9 (𝑥 ⊆ {∅} ↔ ∀𝑦(𝑦𝑥𝑦 ∈ {∅}))
2 velsn 4574 . . . . . . . . . . 11 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
32imbi2i 335 . . . . . . . . . 10 ((𝑦𝑥𝑦 ∈ {∅}) ↔ (𝑦𝑥𝑦 = ∅))
43albii 1823 . . . . . . . . 9 (∀𝑦(𝑦𝑥𝑦 ∈ {∅}) ↔ ∀𝑦(𝑦𝑥𝑦 = ∅))
51, 4bitri 274 . . . . . . . 8 (𝑥 ⊆ {∅} ↔ ∀𝑦(𝑦𝑥𝑦 = ∅))
6 neq0 4276 . . . . . . . . . 10 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
7 exintr 1896 . . . . . . . . . 10 (∀𝑦(𝑦𝑥𝑦 = ∅) → (∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥𝑦 = ∅)))
86, 7syl5bi 241 . . . . . . . . 9 (∀𝑦(𝑦𝑥𝑦 = ∅) → (¬ 𝑥 = ∅ → ∃𝑦(𝑦𝑥𝑦 = ∅)))
9 exancom 1865 . . . . . . . . . . 11 (∃𝑦(𝑦𝑥𝑦 = ∅) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑦𝑥))
10 dfclel 2818 . . . . . . . . . . 11 (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑦𝑥))
119, 10bitr4i 277 . . . . . . . . . 10 (∃𝑦(𝑦𝑥𝑦 = ∅) ↔ ∅ ∈ 𝑥)
12 snssi 4738 . . . . . . . . . 10 (∅ ∈ 𝑥 → {∅} ⊆ 𝑥)
1311, 12sylbi 216 . . . . . . . . 9 (∃𝑦(𝑦𝑥𝑦 = ∅) → {∅} ⊆ 𝑥)
148, 13syl6 35 . . . . . . . 8 (∀𝑦(𝑦𝑥𝑦 = ∅) → (¬ 𝑥 = ∅ → {∅} ⊆ 𝑥))
155, 14sylbi 216 . . . . . . 7 (𝑥 ⊆ {∅} → (¬ 𝑥 = ∅ → {∅} ⊆ 𝑥))
1615anc2li 555 . . . . . 6 (𝑥 ⊆ {∅} → (¬ 𝑥 = ∅ → (𝑥 ⊆ {∅} ∧ {∅} ⊆ 𝑥)))
17 eqss 3932 . . . . . 6 (𝑥 = {∅} ↔ (𝑥 ⊆ {∅} ∧ {∅} ⊆ 𝑥))
1816, 17syl6ibr 251 . . . . 5 (𝑥 ⊆ {∅} → (¬ 𝑥 = ∅ → 𝑥 = {∅}))
1918orrd 859 . . . 4 (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅}))
20 0ss 4327 . . . . . 6 ∅ ⊆ {∅}
21 sseq1 3942 . . . . . 6 (𝑥 = ∅ → (𝑥 ⊆ {∅} ↔ ∅ ⊆ {∅}))
2220, 21mpbiri 257 . . . . 5 (𝑥 = ∅ → 𝑥 ⊆ {∅})
23 eqimss 3973 . . . . 5 (𝑥 = {∅} → 𝑥 ⊆ {∅})
2422, 23jaoi 853 . . . 4 ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 ⊆ {∅})
2519, 24impbii 208 . . 3 (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅}))
2625abbii 2809 . 2 {𝑥𝑥 ⊆ {∅}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {∅})}
27 df-pw 4532 . 2 𝒫 {∅} = {𝑥𝑥 ⊆ {∅}}
28 dfpr2 4577 . 2 {∅, {∅}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {∅})}
2926, 27, 283eqtr4i 2776 1 𝒫 {∅} = {∅, {∅}}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558  {cpr 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559  df-pr 4561
This theorem is referenced by:  pp0ex  5304  pwdju1  9877  canthp1lem1  10339  rankeq1o  34400  ssoninhaus  34564
  Copyright terms: Public domain W3C validator