| Step | Hyp | Ref
| Expression |
| 1 | | df-ss 3948 |
. . . . . . . . 9
⊢ (𝑥 ⊆ {∅} ↔
∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ {∅})) |
| 2 | | velsn 4622 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) |
| 3 | 2 | imbi2i 336 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑥 → 𝑦 ∈ {∅}) ↔ (𝑦 ∈ 𝑥 → 𝑦 = ∅)) |
| 4 | 3 | albii 1819 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ {∅}) ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 = ∅)) |
| 5 | 1, 4 | bitri 275 |
. . . . . . . 8
⊢ (𝑥 ⊆ {∅} ↔
∀𝑦(𝑦 ∈ 𝑥 → 𝑦 = ∅)) |
| 6 | | neq0 4332 |
. . . . . . . . . 10
⊢ (¬
𝑥 = ∅ ↔
∃𝑦 𝑦 ∈ 𝑥) |
| 7 | | exintr 1892 |
. . . . . . . . . 10
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 = ∅) → (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑦 = ∅))) |
| 8 | 6, 7 | biimtrid 242 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 = ∅) → (¬ 𝑥 = ∅ → ∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑦 = ∅))) |
| 9 | | exancom 1861 |
. . . . . . . . . . 11
⊢
(∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑦 = ∅) ↔ ∃𝑦(𝑦 = ∅ ∧ 𝑦 ∈ 𝑥)) |
| 10 | | dfclel 2811 |
. . . . . . . . . . 11
⊢ (∅
∈ 𝑥 ↔
∃𝑦(𝑦 = ∅ ∧ 𝑦 ∈ 𝑥)) |
| 11 | 9, 10 | bitr4i 278 |
. . . . . . . . . 10
⊢
(∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑦 = ∅) ↔ ∅ ∈ 𝑥) |
| 12 | | snssi 4789 |
. . . . . . . . . 10
⊢ (∅
∈ 𝑥 → {∅}
⊆ 𝑥) |
| 13 | 11, 12 | sylbi 217 |
. . . . . . . . 9
⊢
(∃𝑦(𝑦 ∈ 𝑥 ∧ 𝑦 = ∅) → {∅} ⊆ 𝑥) |
| 14 | 8, 13 | syl6 35 |
. . . . . . . 8
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 = ∅) → (¬ 𝑥 = ∅ → {∅} ⊆ 𝑥)) |
| 15 | 5, 14 | sylbi 217 |
. . . . . . 7
⊢ (𝑥 ⊆ {∅} → (¬
𝑥 = ∅ →
{∅} ⊆ 𝑥)) |
| 16 | 15 | anc2li 555 |
. . . . . 6
⊢ (𝑥 ⊆ {∅} → (¬
𝑥 = ∅ → (𝑥 ⊆ {∅} ∧
{∅} ⊆ 𝑥))) |
| 17 | | eqss 3979 |
. . . . . 6
⊢ (𝑥 = {∅} ↔ (𝑥 ⊆ {∅} ∧
{∅} ⊆ 𝑥)) |
| 18 | 16, 17 | imbitrrdi 252 |
. . . . 5
⊢ (𝑥 ⊆ {∅} → (¬
𝑥 = ∅ → 𝑥 = {∅})) |
| 19 | 18 | orrd 863 |
. . . 4
⊢ (𝑥 ⊆ {∅} → (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 20 | | 0ss 4380 |
. . . . . 6
⊢ ∅
⊆ {∅} |
| 21 | | sseq1 3989 |
. . . . . 6
⊢ (𝑥 = ∅ → (𝑥 ⊆ {∅} ↔
∅ ⊆ {∅})) |
| 22 | 20, 21 | mpbiri 258 |
. . . . 5
⊢ (𝑥 = ∅ → 𝑥 ⊆
{∅}) |
| 23 | | eqimss 4022 |
. . . . 5
⊢ (𝑥 = {∅} → 𝑥 ⊆
{∅}) |
| 24 | 22, 23 | jaoi 857 |
. . . 4
⊢ ((𝑥 = ∅ ∨ 𝑥 = {∅}) → 𝑥 ⊆
{∅}) |
| 25 | 19, 24 | impbii 209 |
. . 3
⊢ (𝑥 ⊆ {∅} ↔ (𝑥 = ∅ ∨ 𝑥 = {∅})) |
| 26 | 25 | abbii 2803 |
. 2
⊢ {𝑥 ∣ 𝑥 ⊆ {∅}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {∅})} |
| 27 | | df-pw 4582 |
. 2
⊢ 𝒫
{∅} = {𝑥 ∣
𝑥 ⊆
{∅}} |
| 28 | | dfpr2 4627 |
. 2
⊢ {∅,
{∅}} = {𝑥 ∣
(𝑥 = ∅ ∨ 𝑥 = {∅})} |
| 29 | 26, 27, 28 | 3eqtr4i 2769 |
1
⊢ 𝒫
{∅} = {∅, {∅}} |